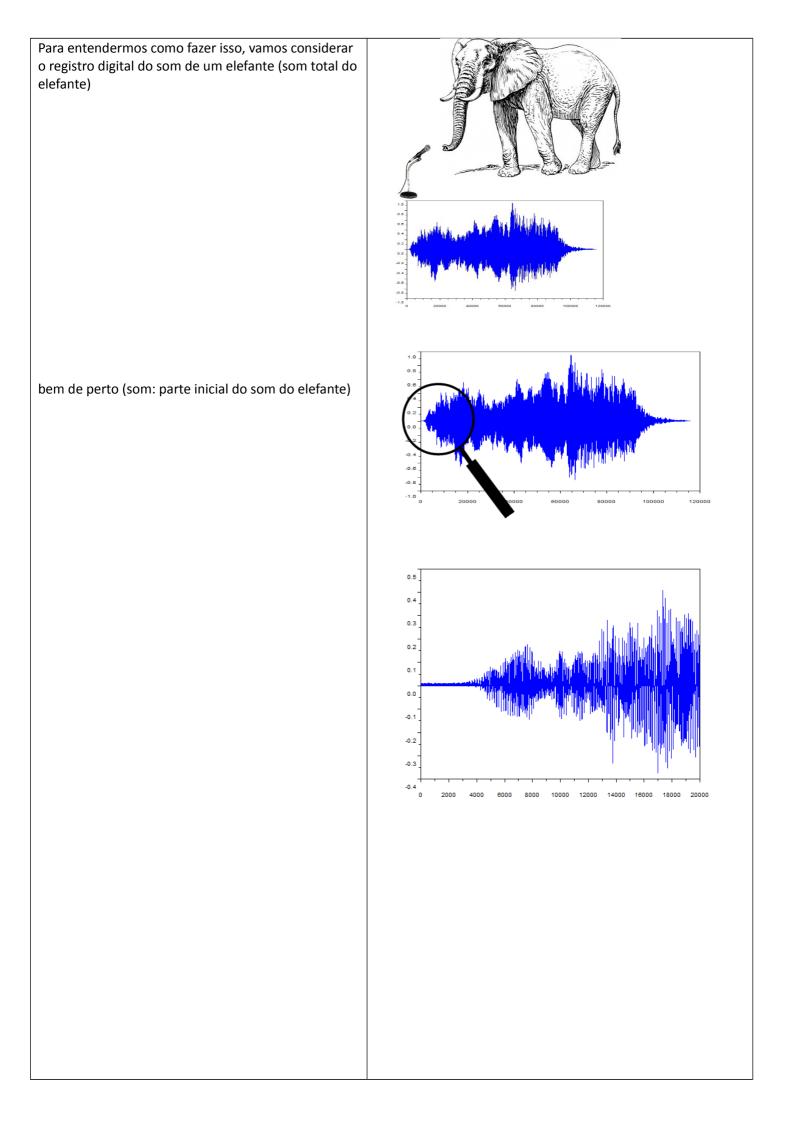
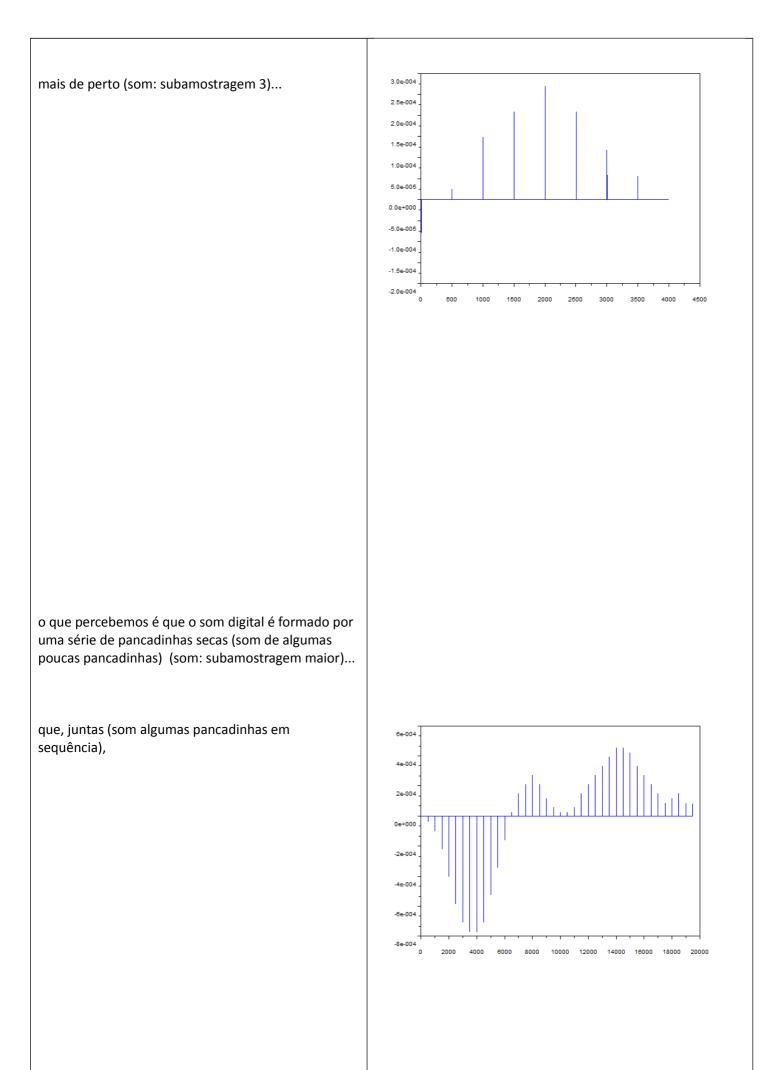
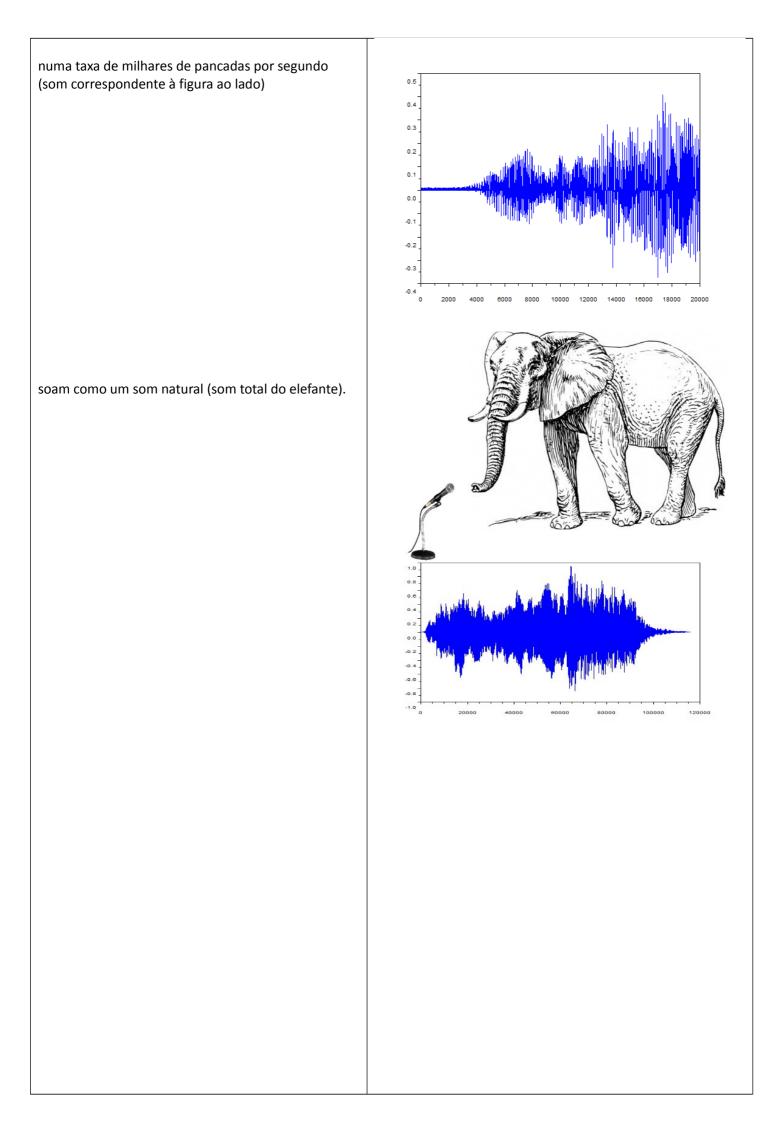
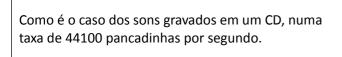
Roteiro	llustração/Lettering
A convolução é uma operação matemática com fama de assustar alunos dos cursos de engenharias e ciências exatas. Mas essa dificuldade pode ser amenizada se a convolução for apresentada como a solução de problemas práticos.	CON VO LU ÇÃO
Por exemplo: O problema de como colocar um elefante dentro de uma garrafa? (som de gargalhadas)	
Claro que deve haver mais de uma maneira de se colocar um elefante dentro de uma garrafa (som do elefante)	
Do ponto de vista acústico, usar a operação matemática da convolução é uma opção bem razoável.	

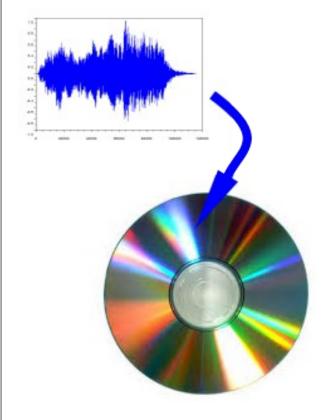


mais de perto (som: subamostragem 1)... 0.5 0.3 0.2 0.1 -0.1 -0.2 -8e-004 mais de perto (som: subamostragem 2)... 4e-004 -8e-004

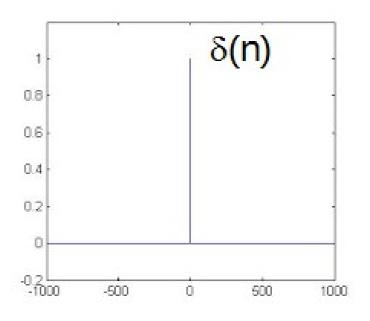




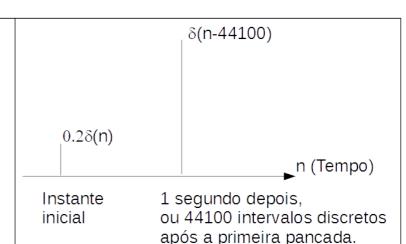




Por tradição, vamos chamar cada pancadinha de impulso, e representar esse impulso com uma letra grega, o delta (som da pancadinha quando a letra grega aparece)



A intensidade do impulso será regulada pela multiplicação do delta por um ganho ou uma atenuação. Por exemplo, dois impulsos separados de 1 segundo e com intensidades iguais a 0.2 e 1 soarão assim (som dos dois impulsos).

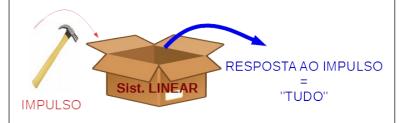


Assim, ao escutar 66150 impulsos com intensidades diferentes, em uma fila que dura 1 segundo e meio, temos a ilusão de que escutamos (som do elefante) um elefante, reproduzido digitalmente.

Se queremos ter ilusão de que o som do elefante vem de dentro de uma dada garrafa, vamos estudar a acústica da garrafa.

Vamos assumir também que a garrafa é um sistema linear.

Sistema linear é uma espécie de rótulo dado a sistemas que apresentam, mesmo que aproximadamente, as propriedades de homogeneidade e aditividade, que são os fundamentos do que está sendo apresentado aqui.

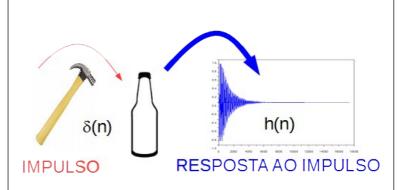


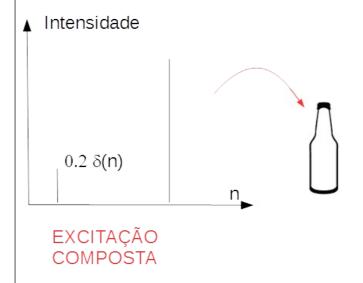
Para esta breve apresentação, basta sabermos que todas as características essenciais de um sistema linear aparecem como resposta a uma pancada seca e curta... um impulso.

Na prática, tudo o que temos que fazer é dar uma pancada curta e seca no sistema, no caso, na garrafa, para conhecermos a sua resposta, a resposta ao impulso, que denotaremos com a letra h (som da resposta ao impulso).

Considerando apenas um impulso e a resposta da garrafa a esse impulso, podemos então usar cópias atrasadas e ponderadas dessa resposta ao impulso para construir virtualmente qualquer resposta a excitações mais complexas, que chamaremos de y.

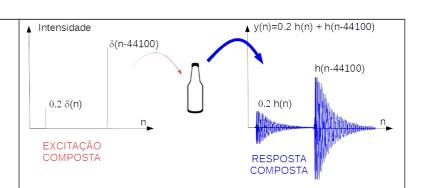
Por exemplo, consideremos apenas dois impulsos, aplicados nos instantes 0 e 1, e com intensidades iguais a 0.2 e 1. (som dos dois impulsos).





Cada impulso vai então excitar a garrafa, gerando uma saída parcial, ou dois h's, modulados com intensidades 0.2 e 1 (som dos dois h's)

Como o sistema é linear, podemos sempre combinar as saídas parciais, como réplicas ponderadas do mesmo h, mesmo que essas réplicas se sobreponham no tempo (ou seja, mesmo que uma réplica de h comece a soar antes das anteriores silenciarem).



$$A_1 \delta(n-1)+$$
 $A_2 \delta(n-2)+...$
 $A_1 h(n-1)+$
 $A_2 h(n-2)+...$

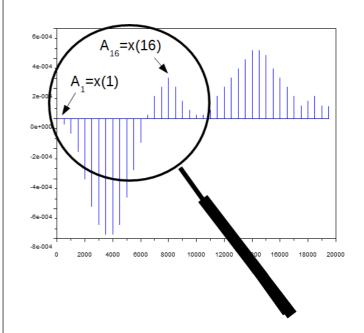
$$\sum \underline{A}_{k} \delta(\underline{n-k}) \qquad \qquad \sum \underline{A}_{k} h(\underline{n-k})$$

Por outro lado, dando um grande zoom na escala de tempo, podemos imaginar o som do elefante como uma sequência de milhares de impulsos (som dos impulsos)

que, quando aplicados à garrafa (som dos h's), dão respostar parciais que se somam para compor a saída y. (sons dos deltas e hs)

Acelerando-se esse efeito até a taxa real de impulsos por segundo (digamos, 44100), encontramos finalmente o som do elefante (som elefante) como se ele estivesse soando de dentro da garrafa (som convolução final)

E a operação matemática correspondente, usada para gerar esse efeito, que nada mais é do que a soma de réplicas ponderadas e atrasadas do mesmo h, é o que chamamos de convolução, neste caso particular, a convolução discreta, pois usamos registros digitais dos sinais do elefante e da garrafa.



$$y(n) = \sum x(k) h(\underline{n-k})$$

ou

$$y = x * h$$

(x convolvido com h)

Aplicações sérias dessa operação matemática são facilmente encontradas em engenharia. Por exemplo, se trocarmos o som do elefante pelo som da voz humana,

e a resposta ao impulso da garrafa pela resposta ao impulso de um canal de comunicações, digamos, um canal de comunicação celular urbano,

o resultado da convolução seria então uma simulação de como o canal celular distorceria a voz humana enquanto ela atravessa a cidade, numa comunicação via celulares, da mesma forma que simulamos o som da voz do elefante passando pela garrafa.

Como ilustração, vale notar que esse tipo de simulação tem aplicações importantes em projetos de engenharia de telecomunicações.

