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Channel Estimation by Symmetrical Clustering
Jugurta R. Montalvão Filho, Bernadette Dorizzi, and João Cesar M. Mota, Member, IEEE

Abstract—A new blind channel estimation algorithm is pre-
sented in this paper. This algorithm comes from the well-known
maximum likelihood estimation approach. However, we inten-
tionally “smooth” the joint probability density function (pdf) of
a finite set of observations in order to reduce the computational
burden. As a result, we obtain an online clustering algorithm
whose main characteristic is the constraint of symmetry among
cluster centers. Computational simulations are used to evaluate
this algorithm.

Index Terms—Channel estimation, deterministic annealing,
symmetrical clustering.

I. INTRODUCTION

T HIS work concerns the blind estimation of the channel im-
pulse response of a sampled system. We assume that the

system is linear and time-invariant, the emitted signal is digital,
and that the receiver is synchronously sampled. In such a case,
the joint probability density function (pdf) of all the received
data is a parametric function of the channel
impulse response. Hence, the inference of channel parameters
based on the received data is a standard parametric problem
for which the maximum likelihood estimation (MLE) may be
asymptotically efficient [13], [18].

However, in some cases, the joint pdf may have an intricate
dependency on the channel parameters, and the MLE cannot be
used because of computational limitations.

A possible suboptimal solution is based on the hypothesis
that, given awindowof synchronously sampled channel out-
puts, if is sufficiently large, we may assume that statistical
dependency of the samples on a spe-
cific emitted symbol is much stronger than its dependency on
any sample outside this block [16].

Roughly speaking, the idea of assuming statistical indepen-
dence between blocks of observations has been successfully ap-
plied in problems involving hidden Markov models (HMMs)
[25] (conditionalsplit data likelihood), deconvolution problems
[18], and channel identification [1] (partial likelihood estima-
tion).

In our work, we have taken the same path but with some ad-
ditional constraints. For instance, the pdf estimator is composed
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of a very small number of Gaussian kernels, which corresponds
to using a smoothed model of likelihood function.

Indeed, using a smoothed pdf estimator is the main feature of
our proposal because it dramatically reduces the computational
load of the resulting algorithm.

Another important aspect of the proposed blind estimation al-
gorithm is the explicit use ofa priori knowledge about the finite
modulation alphabet. Indeed, it is well known that since a dis-
crete-alphabet signal is obviously non-Gaussian, it has led to the
development of numerous identification/equalization methods
based on implicit high-order statistics (HOS) [4], [8], [20], [24],
[26], [27], explicit HOS [5], [9], [21], [29], [31], maximum like-
lihood [11], [12], [15], [28].

For instance, among the recently proposed approaches based
on the exploitation of the finite alphabet of the transmitted sym-
bols, we can cite [32], where the authors propose an algebraic
strategy, and [3], where a blind subspace criterion is combined
to a decision-directed one.

Furthermore, concerning single input multiple output (SIMO)
systems,1 in [2], a blind recursive algorithm based on deter-
ministic maximum likelihood methods is proposed, where the
knowledge about the finite alphabet of symbols is also exploited.

All those recent articles confirm that algorithms based on
thea priori knowledge about the finite-modulation alphabet are
able to improve the blind equalizer performance while keeping
low computational burden. More specifically, special attention
has been devoted to hybrid algorithms that combine decision-
directed (DD) equalization with another blind equalizer tech-
nique, which is able to open an initially closed channel eye (see,
for instance, [19] and references therein).

Fortunately, as it is shown in Section III-A, our proposed
algorithm has such a characteristic of a hybrid cost function,
which enables it to open an initially closed eye as well as to
converge asymptotically toward a DD equalization.

This paper is organized as follows. The system model is de-
fined in Section II. In Section III, we show why channel identi-
fication can be seen as a symmetric clustering task, and then, we
present our probabilistic approach, as well as the resulting cost
function. In Section III-B, the symmetrical clustering algorithm
is presented, whereas in Section IV, we present some illustra-
tive simulation results with the 4-QAM modulation scheme and
compare the performance of this algorithm to that of the higher
order statistics (HOS) algorithm proposed by Porat and Fried-
lander [21]. Furthermore, this algorithm is also compared with
the algebraic approach proposed by Yellin and Porat [32]. Fi-
nally, some more illustrative simulations are presented.

II. SYSTEM MODEL

We consider a communication scheme where digital data
is represented by a stochastic process ,

1A SIMO system is also addressed in [3].
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, which is drawn with equal probability from
a finite and symmetric alphabet of complex symbols

, forming an independent and identi-
cally distributed (i.i.d.) sequence of variance. Furthermore,
the noise, which is represented by , is additive white
Gaussian with zero mean and variance. Finally, the channel
model is a time-invariant finite impulse response (FIR) filter
with taps.

Let denote a
windowof consecutive channel outputs (the superscript
stands for matrix-transpose). This output is modeled as

where

...

is the channel convolution matrix,
is the channel impulse response;

is a windowof
symbols, and is a
windowof noise samples.

From a geometric point of view, each realization of the
random vector defines a point in an -dimensional
complex space , and such points can be labeled according
to the corresponding realization of the random variable

, where is an arbitrary decision delay. Moreover, it
is straightforward to show that there areclusters of points of
the same label whose means—or “barycenters”—are given by
the conditional means:

...
(1)

where if or . For instance, in a 4-QAM
scheme, there are four clusters where each such cluster is asso-
ciated with one complex symbol in the modulation alphabet.

Therefore, according to (1), finding these barycenters corre-
sponds to identifying the channel model coefficients. Further-
more, if and , then is a function
of all the channel coefficients (inversely ordered).

If the symbol alphabet is symmetrically valued, as in the
-PSK or -QAM schemes, then it is clear from (1) that the

barycenters are also symmetrically placed in the-dimen-
sional complex space. As a consequence, a straightforward
strategy to perform a blind channel identification is to apply a
clustering algorithm over the -dimensional observations.
Moreover, in order to take advantage of thea priori knowledge
about the symmetry between centers, we can also impose the
constraint of symmetry between estimates, i.e.,

...

In [17], we studied two approaches to perform channel
identification using symmetrical clustering. The first one cor-

responds to a geometrical strategy where the estimated centers
are stochastically adapted according to the “winner-takes-all”
rule, like an on-line K-means algorithm. We have shown that
the simplest geometrical clustering algorithm is strongly related
to the Bussgang [10] algorithms for blind equalization. This is
due to the fact that finding the label of the closest center—the
winner—is equivalent to estimating .

The second approach is better because it is based on a prob-
abilistic formalization of the problem, where, in fact, the clus-
tering algorithm comes from a pdf fitting strategy. This paper
is concerned with a special case of this second approach, where
conditional pdf smoothing is maximal.

III. PROBABILISTIC CLUSTERING APPROACH

It is straightforward to show that the pdf of the random vector
is given by a Gaussian mixture [22], which is parameter-

ized by the channel coefficients and the noise variance, i.e.,

where

stands for -norm, and is the th combination of
symbols.

One possible strategy to estimateand can be the
adaptation of a parametric likelihood function with

Gaussian kernels toward the maximization of
. Nevertheless, it is well known [22] that the

practical application of this maximum-likelihood approach to
blind identification is discouraged by the possibly prohibitive
number of Gaussian kernels of .

In this paper, we propose a specific smoothed likelihood func-
tion that highlights the link between likelihood maximization
and symmetrical clustering.

This smoothed likelihood function is formed by only
Gaussian kernels

where

(2)

...
...
. . .

. . .
...

and ...

Superscript stands for Hermitian transposition, andstands
for conjugation.
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Note that is the estimate of the cluster covariance matrix
[see Appendix A for deduction of (2)]

which is identical for all the clusters.
Now, a natural cost function for adjusting should be

. In fact, we first derived a
stochastic gradient algorithm to minimize this cost function,
and by computational simulation, we observed the following.

a) The cost function is not necessarily convex. Moreover,
the number and the “deepness” of local minima of
are related to the estimated variance. This means
that whenever is reduced, local minima of became
deeper, and we can also observe the “birth” of new
minima.

b) Consequently, we observed that simulation trials starting
from a relatively high parameter (high w.r.t. the actual
noise variance) have a stronger probability of finding a
good channel estimates.

Fortunately, these empirical results can be explained by the
theory behind deterministic annealing [23], [30], which is a
technique inspired by the existing analogy between optimiza-
tion problems and statistical physics.

In order to take advantage of this theoretical background, we
adapted deterministic annealing to our specific problem. This
adaptation is straightforward [17]: We simply replace the noise
variance estimate by a “temperature parameter,” and then, we
control this parameter while the stochastic minimization of the
cost function is going on. Furthermore, the resulting cost func-
tion is a slightly modified version of , i.e.,

(3)

Note that in this case, we do not estimate the noise variance.
According to the physical analogy, we have thea priori

knowledge that the number of local minima of increases
whenever the temperature goes down [23]. Actually, the
number of local minima changes only at specific values of
the temperature. For example, at very high temperatures,
has only one minimum at the origin, and the first transition
occurs when , where is the largest eigenvalue
of . On the other hand, very low
temperatures may cause an excessive number of local minima.

Operating between these two extremes, the annealing process
tries to reach the global minimum by starting the optimization
process at high temperatures and keeping the process going
while the temperature is slowly lowered.

A. Cost Function Analysis

According to [23], the cost function in (3) is convex when
, where is the maximum (in absolute value)

eigenvalue of . Moreover, in our specific case, due to the
cluster symmetry, the minimum of this cost function is at the
origin (a null vector).

Then, it is evident that we are looking for minima of the cost
function for low temperatures. Unfortunately, in this case, the
cost function is not convex. That is why we use an annealing
strategy in order to track the deepest minima while the cost func-
tion changes.

However, what can we say about minima in low tempera-
tures? Though a rigorous study of all these minima seems to be
too difficult (due to the imbricated dependence of on ), we
are able to approximately analyze one class of such a minima.
This is made possible thanks to the following property of matrix

.
Property: Given , the minimum eigen-

value of , and its corresponding eigenvector can be
approximated by

A1)

A2)

where , and (the 1 is at
the th position).

Proof: See Appendix B.
Thanks to these approximations, it is clear that for a channel

without spectral nulls (for which a FIR zero forcing equalizer
may provide good equalization for finite values of) for values
of not too small (which corresponds to the length of a “vir-
tual” zero forcing equalizer ) the second term of A1 predom-
inates. Moreover, since is a control parameter, when is
made much smaller than any other eigenvalue of, thanks to
the singular value decomposition theorem, for most of the chan-
nels, we have (see discussion in Appendix D)

A3)

Now, we are able to study the cost function throughout
approximations A1–A3. First, we expand the cost function as

(4)

In the stochastic adaptation algorithm, we intentionally ne-
glect the dependence of on ; see Section III-B. Then, we
should concentrate our attention only on the first term of (4),
where the application of A3 to the Gaussian kernels leads
to

Given that , then

where is the output of a “virtual” zero-forcing
equalizer.

Now, since we get a winner center2 for each realization of
the random vector , it is useful to associate this center to
the random variable ,
and to be coherent with usual notation, we should say that
the symbol associated with the winner center is an emitted
symbol estimate . That is to say that

2The closest one in Mahalanobis distance.
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Then, we obtain

where .
From these expressions, it is straightforward to observe the

following.

• When the temperature is high, relative to the variance
of , distances computed in

tend to be numerically closer to each other, and then, the
“winner center” is not clearly observed.

• On the other hand, for low temperatures, and when,
which is length of the virtual zero-forcing equalizer, is
big enough to allow a good zero-forcing inversion of the
channel, if the estimate is close to the channel, up to
a phase rotation and/or a delay shift (for ), then
the channel eye is open, and the summation in the cost
function is dominated by the term associated to the winner
center

It is worth noting that the expression on the right side
of the equation, for , coincides with a mean
squared error decision directed (MSE-DD) cost function
since it measures the mean squared deviation of the vir-
tual ZF equalizer output from the implicit symbol decision

.
It is an interesting result because the MSE-DD-based algo-

rithm leads to the lowest steady-state error among all blind al-
gorithms [19], although it is not able to open an initially closed
channel eye.

In contrast, we have observed by simulations that the cost
function is able to open a channel eye at high and medium
temperatures, and according to the approximations shown pre-
viously, it converges to a MSE-DD cost function when the eye
is open.

That is a very worthwhile feature for a blind cost function.
Indeed, as it was commented in Section I, some algorithms pro-
posed in the references force such a mixed behavior in their so-
lutions. Here, we have obtained it naturally, as a consequence
of the chosen cost function and thanks to a property of the esti-
mated covariance matrix .

B. Algorithm

We have used a stochastic gradient method to find a minimum
of by adapting the estimated channel coefficients. Therefore,
we need to calculate the gradient

(5)

Nevertheless, it is worth noting that depends on in such a
way that determining this gradient is quite a difficult task. Then,
we preferred to adapt the algorithm as follows.

• Fix while adapting (stochastically, one step).
• Recalculate (analytically).

The stochastic adaptation ofis done by

(6)

where

where

and ..
.

In order to underline the clustering nature of this algorithm,
we can alternatively rewrite (6) as

(7)
Then, we can see that in this clustering algorithm, the

“winner-takes-all” rule is replaced by something more pow-
erful, i.e., all distances are linearly transformed by the
inverse of the cluster covariance matrix . Then, these “cor-
rected” metrics are weighted by the negative exponential of the
Mahalanobis [6] distance between the observationand each
center . Finally, a “generating center” is updated according
to this weighted summation of corrected distances. Note that
symmetry between centers is assured because the adjustment
of all centers is made in one go, through the adjustment of the
generating center.

On the other hand, applying deterministic annealing ap-
proach, we exponentially lower the “system temperature” (in
place of the estimated noise variance) while using the stochastic
gradient to adapt parameter (or, equivalently, ). Indeed,
according to some heuristics that we are not going to present
here, we usually apply an exponential annealing rate where

and , and is the number of
observations to be considered in each on-line annealing trial.

The exponential annealing rate leads to the following temper-
ature updating expression:

(8)
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where . It is directly com-
puted from (8) for .

Clearly, in such an approach, we need first to estimate the
received signal variance , as well as the noise variance,
which are both supposedly stationary in a frame of symbols.
Fortunately, we have observed that even if we have a reasonable
“guess” about and , the effect of bad guesses seems to be
negligible for practical purposes.

Concerning the channel length estimate, since we suppose
that all coefficients to be estimated are nonzero, we fix the es-
timated channel order equal to the length of : .
Furthermore, we also fix .

The resulting algorithm can be summarized as follows.
Initialization:

Set (the 1 is at the th
position), , and .
Compute .

For to , do the following.
• Analytically compute from (2).
• Stochastically update from (6) [or from (7)]

for every realization of , where is an
arbitrary offset index.

• Lower temperature according to
[equivalent to (8)].

End.
Thanks to theoverall learning-rate parameter adaptation [the

resulting value of in (7)], the proposed algorithm is some-
what similar to Kohonen’s self-organizing map (SOM) [14],
which is a classical neural network algorithm. This equivalence
is helpful because it can provide us with some insights into
the performance of this new identification algorithm. Neverthe-
less, the proposed algorithm has a significant particularity: the
symmetry constraint, which is obtained by the adaptation of all
the centers at once, through the adaptation of the “generating
center.”

C. Class of Channels That are Identifiable

Given the clustering nature of the proposed algorithm, if clus-
ters of observations are not overlapped (or just slightly
overlapped), the algorithm is able to find the cluster centers or,
equivalently, a channel estimate. Moreover, if the channel does
not have spectral nulls, as shown in Appendix E (see also [17]
for more details), we can improve the separation between cluster
by changing the dimension of the observation vector , re-
gardless of whether the channel is minimum, maximum, or non-
minimum phase.

Then, the proposed algorithm is theoretically able to deal with
any kind of channel without spectral nulls, but special atten-
tion must be paid to the dimensions of the observation vector.
For instance, channels with near-nulls demand higher values of

(= ) for the algorithm to work properly.
Since we assume that noa priori information about the

channel is available, we arbitrarily choose a “not too small”
length for , keeping in mind that it also corresponds to the
dimension of the observation vector. On the other hand, even
if we know the length of , we typically use in
order to leave enough places for eventual delay shifts on the
estimate (we initialize the estimator with ; see
Section III-B.

IV. SIMULATIONS

In this section, the proposed algorithm is compared by sim-
ulation to two different algorithms for blind channel identifica-
tion. First, we compare our algorithm with the well-known algo-
rithm by Porat and Friedlander [21] based on higher order statis-
tics (HOS). In fact, in [21], two off-line (block) algorithms are
proposed. We are going to compare our algorithm with the most
powerful of them: thenonlinear least square estimation algo-
rithm. After that, we also compare the proposed algorithm with
the algorithm provided by Yellin and Porat [32], which uses the
finite alphabet constraint (as we do). Finally, we address identi-
fiability and convergence issues by means of illustrations.

In order to make the first comparison, we use the same per-
formance measure: the residual intersymbol interference (RISI),
which is defined by

RISI

where corresponds to the combined impulse re-
sponse of the channel and a Wiener transversal equalizer given
by

where is an arbitrary decision delay set in this first comparison
with . Note that like , is also a convolution ma-
trix, but in the following simulations, has only five columns
(because ), whereas has 65 columns (because the
Wiener equalizer has 65 inputs). We emphasize that the Wiener
transversal equalizer is a separate block since the proposed al-
gorithm only performs channel estimation and that the choices
of 65 taps and are made in order to fairly compare our
channel estimates with those in [21] since it was what they also
used.

The modulation scheme is the 4-QAM, and the channel
model is represented by

. Furthermore, the signal-to-noise ratio
SNR is 40 dB.

Note that since this channel presents two in-band near nulls
(see Fig. 4), blind equalization of this channel is quite a difficult
task.

Figs. 1 and 2 illustrate, respectively, the two identification al-
gorithms coupled with two linear transversal Wiener equalizers
with the same number of taps.

We would like to underline that unlike Porat and Fried-
lander’s algorithm, the symmetrical clustering algorithm does
not estimate the noise variance. Instead, we set it to a small
value just to get nonsingular, even when . In the
presented simulations, we set .

Simulation results are shown in Fig. 3, where each point was
averaged over 100 Monte Carlo independent runs.

In these trials, the initial temperature was set to ,
the final temperature was set to , and the gradient
step was set in the range . These choices were
made empirically.

We can see that for more than 4000 samples, the on-line clus-
tering algorithm provides a better channel equalization than the
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Fig. 1. Nonlinear least square estimation algorithm coupled to a 65-tap Wiener
linear equalizer.

Fig. 2. Symmetrical clustering algorithm coupled to a 65–tap Wiener linear
equalizer.

off-line (block) nonlinear HOS algorithm of Porat and Fried-
lander. However, although we observed a high convergence ratio
among the independent simulation trials (100 trials per point),
we note that the clustering algorithm may eventually have a poor
convergence (toward spurious minima of the cost function) in
terms of RISI.

Moreover, since our algorithm is on-line, the period of time of
one annealing trial is , where is the symbol period.
For instance, according to the simulation presented in Fig. 3,
we can get an RISI of about17 dB in s. Therefore, it
is clear that in this algorithm, deterministic annealing does not
result in long bath simulations (which is frequently the case with
probabilistic annealing).

Fig. 4 shows the frequency responses of the channel before
and after equalization for 8000 samples.

Results presented in Fig. 3 were obtained for a SNR of 40 dB,
which is convenient for comparison with the results presented in
[21]. Nevertheless, Fig. 5 illustrates the symmetrical clustering
algorithm for the same channel but with a SNR dB, com-
pared to that for 40 dB. This comparison provides a rough idea
about the effect of the SNR on the algorithm performance.

Fig. 3. Simulation results. Performance versus number of symbols. Two
algorithms.

Fig. 4. Frequency responses of the channel before (dashed line) and after
equalization.

For the second comparison, we got the longest channel
used in [32], which illustrates a telephone channel:

and BPSK modulation.
By using their algebraic approach and then applying their

channel estimate on a least squares FIR approximation of the
inverse system (a transversal equalizer), Yellin and Porat ob-
tained a mean square errorMSE of

17.2 dB for an SNR of 45 dB.
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Fig. 5. Simulation results. Performance versus number of symbols. Two SNR
values.

Fig. 6. BPSK, telephone channel,̂N = M = 11, NS = 2000. Wiener
equalizer length: 11 taps,T = 1, T = 0:01, 
 = 0:02. Fifty
independent trials per point.

In contrast, we tested our algorithm with the same channel
for a range of noise levels. Fig. 6 shows the performances we
obtained, as well as the optimum MSE for a linear transversal
equalizer with 11 taps. Note that for a SNR beyond 25 dB, our
algorithm provides a MSE lower than20 dB.

On the other hand, the algorithm by Yellin and Porat con-
verges after about 580 symbols were emitted, whereas we have
used 2000 channel output samples to get the results shown in
Fig. 6.

Evidently, the convergence of our algorithm depends on
channel characteristics, cooling rate, and the stochastic gradient
step. In fact, a theoretical analysis of the dynamic behavior of
this algorithm has yet to be made.

In order to get a feeling about identifiability and convergence
issues, the average RISI performance was computed over 150

Fig. 7. BPSK, 150 randomly drawn channels (with three coefficients) per
point, ten independent trials per channel,N̂ = M = 7, NS = 4000, linear
equalizer length: 11 taps,T = 2, T = 0:01, 
 = 0:01.

Fig. 8. BPSK,f = [0:5 1] , N̂ = M = 4, SNR= 40 dB,NS = 4000,
T = 3, T = 0:01, 
 = 0:02. Oone single trial.

randomly drawn channels (ten independent estimation trials per
channel) versus SNR. Channel estimates were then used to im-
plement MSE linear transversal equalizers. Finally, the MSE
equalizer performances for the actual channel and its estimate
were put together in Fig. 7.

Note that channel coefficients were independently drawn
from a Gaussian random source with zero mean and unit
variance. It means that no restrictions were imposed, and all
classes of channels were potentially used in this simulation,
including those with spectral nulls and near nulls.

Finally, to illustrate the effect of temperature parameter on the
channel estimation process, as well as to illustrate the on-line
evolution of estimated coefficients, one single estimation trial
for and is presented in Fig. 8.

In this trial, we set a high initial temperature. Consequently,
we can easily observe that for the initially high temperatures, all
coefficient estimates roughly tend to zero (500 initial iterations).
We also can observe that the two additional coefficients of
converge to zero at the end of the annealing process.
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V. CONCLUSIONS ANDPERSPECTIVES

A new blind channel estimation algorithm has been presented
in this paper. This algorithm uses a smoothed estimator of the
sampled signal pdf, which provides control over the computa-
tional burden commonly associated with the maximum likeli-
hood estimator in these cases.

The chosen cost function came from the analogy between the
formulation of our parametric estimation problem and physical
systems free energy minimization. Such an analogy provides a
straightforward implementation of the deterministic annealing
scheme in order to cope with local minima problems.

We have shown that the final algorithm is, from a certain
point of view, a clustering algorithm, where a constraint of sym-
metry between clusters centers is imposed. Furthermore, the
“winner-takes-all” rule commonly associated with most clus-
tering algorithms is replaced by an adaptation rule that takes
into account all centers. As a result, this clustering algorithm
is similar to Kohonen’s self-organizing map (SOM), which is a
classical neural network algorithm.

Nevertheless, despite this helpful similarity and the good sim-
ulation results obtained up to now, some new aspects of this ap-
proach give rise to questions concerning the optimization of the
algorithm parameters. Clearly, in order to optimize such param-
eters, a theoretical analysis of the proposed cost function seems
to be necessary. Indeed, this is an open subject toward which our
future work will be oriented.

APPENDIX

A. Calculation of

For the calculation of , an useful auxiliary matrix can be
obtained from by keeping only the th row of and setting
to zero all the rest:

Thanks to this auxiliary matrix, we can write

where

and . Substituting it in

gives

...

...

Since matrix has a null row that multiplies the only term
depending on in the equation, i.e., , the resulting
matrix does not depend on, and it follows that

Finally, thanks to the following identities:3

, it yields

B. Proof of the Matrix Property

Proof: By definition, the minimum eigenvalue of must
satisfy

(9)

Given the definition of , after some algebraic manipula-
tions (detailed in Appendix C), we obtain

where replaces in the definition of [see (2)].
An approximate solution can be obtained by forcing the

th element of to be as close as possible to 1 while assuming
that . That is, the minimization of the right side of (9)
is approximately equivalent to the minimization of .
Consequently, the vector that satisfies it is given by

, and .

C. Rayleigh Quotient Manipulation

Given the Rayleigh quotient

(10)

where and is the th
row of , i.e., , we can handle the
numerator as follows:

(11)

Applying (11) in (10) and replacing by (temperature
parameter), we obtain

3These are easily verifiable since, by definition,^F has a single non-null row.
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D. Some Considerations About the Eigenvalues of

It is easy to show with examples that given, , and ,
if a zero forcing (ZF) equalizer provides a cascade (estimated
channel + ZF equalizer) effect close to the ideal (i.e., )
then, for , the smallest eigenvector of , , is much
smaller than any other.

For instance, let ,
, and (arbitrarily chosen), we obtain ,

whereas the minimum eigenvalue among the remaining is
. It is also worth observing that the ratio between

and increases with . For instance, by increasing from
10 to 12 in the previous example, we have and

.
Unfortunately, producing a rigorous proof of this property

turns out to be quite difficult since it depends on the charac-
teristics of each channel model.

However, some analytical clues will provide us with a little
more than just numerical evidences.

From (2), matrix is clearly Hermitian, and thus, its eigen-
vectors form a vector basis (i.e., they are mutually orthogonal).

Now, let be the eigenvector of corresponding to ,
which is its minimum eigenvalue. According to approximation
A2, approximates the ZF equalizer .

On the other hand, for the eigenvector of corre-
sponding to (the eigenvalue of closest to ), it can be
shown that

According to Appendix C, it is equivalent to

where .
Now, let and assume by hypothesis that ;

then

Since and are irrelevant here, then, without loss
of generality, let us assume that , yielding

(12)

A special interpretation of (12) corresponds to those cases
where good ZF equalizers are obtained, i.e., when . In
such cases, for the approximation (12) to hold,must also be
a good ZF solution for the same delay decision

However, keeping in mind that and are orthogonal
eigenvectors and that the columns ofare not linearly depen-
dent (because they are shifted versions of the same finite length
vector ), we finally get the following scenario: If a ZF equalizer
provides a cascade effect (estimated channelZF equalizer)
near the ideal one (i.e., ), a nonminimum eigenvalue

( ) will approximate the minimum one ( ) only if the two or-
thogonal vectors ( and ) are both mapped onto a new space
spanned by the columns of(linearly independent vectors) near
each other, where both are close to the vector.

Although this is not necessarily a contradiction, since it de-
pends on the characteristics of the space spanned by the columns
of , we expect, and this can easily be verified with the help of
numerical examples, that the orthogonal vectorsand are,
in most cases, mapped onto near-orthogonal vectors of the space
spanned by the columns of.

As a consequence, in cases where , corresponds
to a ZF equalizer, whereas does not. Then, (which is pro-
portional to ) tends to be much greater
than (which is proportional to ).

E. Relationship Between the Observation Space Dimension
and Separation Between Classes

First, let
, be sets of distinct column vectors of

symbols. Each set is labeled with the value of( )
at the th vector row, which is identical with all vectors in a set.

Similarly, let be sets of
noiseless vectors of consecutive channel outputs given by

(13)

Each set (or cluster of noise-free observations) is thus asso-
ciated with a class according to the value of .

On the other hand, if all zeros of the polynomial channel
model are non-null, then an equalizer that attempts to
achieve the inverse of the channel transfer function, with a pos-
sible time delay, has the following transfer function:

(14)

where an appropriate delayis prevented from noncausality.
Concerning this ZF equalizer, the following is well known

[10], [19].

a) For finite-length channel models, the optimal ZF equalizer
corresponds to an IIR filter.

b) In such a case, and given that the channel model has no
spectral nulls (or, equivalently, that no zeros are
allowed on the unit circle), a, FIR filter with a
suitable number of taps—a truncated and delayed inverse
of the channel—can provide a good approximation to the
optimal ZF solution.

c) The bigger the number of taps of the FIR equalizer, the
closer the cascade , and becomes,4 where
“ ” stands for convolution, and, , and are column
vectors of the corresponding polynomial coefficients.

From this perspective, the optimum ZF equalizer is the
best linear discriminant [6], [30] since the projection of
any vector onto it yields its label . Similarly, for
the truncated ZF equalizer, this projection yields a scaled
version of this label plus a residual bias, as shown in the
following.

4Equivalently,G(z ) = F (z )H(z ) ! z .
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According to (13), we have

and since , then

where is the sum of all nonzero , multiplied
by their corresponding symbols in vector .

Clearly, as , , and .
It is worth noting that according to c), this ZF solution
can be improved by increasing the number of taps of the
linear equalizer. Note that this number of taps can also
be regarded as the dimensionof the space spanned by
vectors .

Finally, considering the symmetry of the symbol al-
phabet (around the origin of), the values of for all

inside each class are also symmet-
rically dispersed around the origin of, and this disper-
sion is identical for all classes. As a consequence, the
minimal distance between vectorsof different classes,
i.e., the separation between classes, is increased asis
minimized. Moreover, according to b) and c), for channel
models that do not have spectral nulls, the augmenta-
tion of the separation between classes can be obtained by
increasing , that is, the dimension of the observation
space of .
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