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Channel Estimation by Symmetrical Clustering

Jugurta R. Montalvao Filho, Bernadette Dorizzi, and Jodo Cesar M., Number, IEEE

Abstract—A new blind channel estimation algorithm is pre- of a very small number of Gaussian kernels, which corresponds
sented in this paper. This algorithm comes from the well-known to using a smoothed model of likelihood function.
maximum likelihood estimation approach. However, we inten-  |ndeed, using a smoothed pdf estimator is the main feature of

tionally “smooth” the joint probability density function (pdf) of o, nronosal because it dramatically reduces the computational
a finite set of observations in order to reduce the computational ) .
load of the resulting algorithm.

burden. As a result, we obtain an online clustering algorithm . . . .
whose main characteristic is the constraint of symmetry among  Another important aspect of the proposed blind estimation al-
cluster centers. Computational simulations are used to evaluate gorithm is the explicit use af priori knowledge about the finite

this algorithm. modulation alphabet. Indeed, it is well known that since a dis-
Index Terms—Channel estimation, deterministic annealing, Créte-alphabetsignalis obviously non-Gaussian, it has led to the
symmetrical clustering. development of numerous identification/equalization methods

based on implicit high-order statistics (HOS) [4], [8], [20], [24],
[26], [27], explicit HOS [5], [9], [21], [29], [31], maximum like-
|. INTRODUCTION lihood [11], [12], [15], [28].
HIS work concerns the blind estimation of the channel im- For instance, among the recently proposed approaches based
T pulse response of a sampled system. We assume thataRéhe exploitation of the finite alphabet of the transmitted sym-
system is linear and time-invariant, the emitted signal is digitdl0ls, we can cite [32], where the authors propose an algebraic
and that the receiver is synchronously sampled. In such a cagieategy, and [3], where a blind subspace criterion is combined
the joint probability density function (pdf) of all the receivedo a decision-directed one.
dataz(0), ..., z(n) is a parametric function of the channel Furthermore, concerning single input multiple output (SIMO)
impulse response. Hence, the inference of channel paramegyigiems, in [2], a blind recursive algorithm based on deter-
based on the received data is a standard parametric probf®ifiistic maximum likelihood methods is proposed, where the
for which the maximum likelihood estimation (MLE) may beknowledge about the finite alphabet of symbols is also exploited.
asymptotically efficient [13], [18]. All those recent articles confirm that algorithms based on
However, in some cases, the joint pdf may have an intricafeea priori knowledge about the finite-modulation alphabet are
dependency on the channel parameters, and the MLE canno@ble to improve the blind equalizer performance while keeping
used because of computational limitations. low computational burden. More specifically, special attention
A possible suboptimal solution is based on the hypothedigs been devoted to hybrid algorithms that combine decision-
that, given avindowof A/ synchronously sampled channel outdirected (DD) equalization with another blind equalizer tech-
puts, if M is sufficiently large, we may assume that statisticdlique, which is able to open an initially closed channel eye (see,

dependency of the sampleér), ..., z(n — M + 1) onaspe- forinstance, [19] and references therein).
cific emitted symbol is much stronger than its dependency onFortunately, as it is shown in Section Ill-A, our proposed
any sample outside this block [16]. algorithm has such a characteristic of a hybrid cost function,

Roughly speaking, the idea of assuming statistical indepethich enables it to open an initially closed eye as well as to
dence between blocks of observations has been successfullycgpverge asymptotically toward a DD equalization.
plied in problems involving hidden Markov models (HMMs) This paper is organized as follows. The system model is de-
[25] (conditionalsplit data likelihoodl, deconvolution problems fined in Section I1. In Section I, we show why channel identi-
[18], and channel identification [1pértial likelihood estima- fication can be seen as a symmetric clustering task, and then, we
tion). present our probabilistic approach, as well as the resulting cost
In our work, we have taken the same path but with some dginction. In Section 11I-B, the symmetrical clustering algorithm
ditional constraints. For instance, the pdf estimator is composédoresented, whereas in Section IV, we present some illustra-
tive simulation results with the 4-QAM modulation scheme and
compare the performance of this algorithm to that of the higher
order statistics (HOS) algorithm proposed by Porat and Fried-
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—1,0,1, ...}, which is drawn with equal probability from responds to a geometrical strategy where the estimated centers
a finite and symmetric alphabet of complex symbols are stochastically adapted according to the “winner-takes-all”
a(n) € {a1, as, ..., as}, forming an independent and identi-rule, like an on-line K-means algorithm. We have shown that
cally distributed (i.i.d.) sequence of variang®. Furthermore, the simplest geometrical clustering algorithm is strongly related
the noise, which is represented K¥(n)}, is additive white to the Bussgang [10] algorithms for blind equalization. This is
Gaussian with zero mean and variange Finally, the channel due to the fact that finding the label of the closest center—the
model is a time-invariant finite impulse response (FIR) filtewinner—is equivalent to estimatingn — d).

with N taps. The second approach is better because it is based on a prob-

Let x(n) = [z(n)z(n — 1)---2(n — M + 1)]* denote a abilistic formalization of the problem, where, in fact, the clus-
windowof M consecutive channel outputs (the superscfipt tering algorithm comes from a pdf fitting strategy. This paper
stands for matrix-transpose). This output is modeled as is concerned with a special case of this second approach, where
x(n) = FTa(n) + b(n) conditional pdf smoothing is maximal.

where [Il. PROBABILISTIC CLUSTERING APPROACH
f 0 Itis straightforward to show that the pdf of the random vector
F= x(n) is given by a Gaussian mixture [22], which is parameter-
0 f ized by the channel coefficients and the noise variance, i.e.,
(N+M—-1)xM
1 SN+M—1
is the channel convolution matrif, = [fo f1 --- fnv_1]* p(x(n); £, 02) = = pi(x(n))
is the channel impulse respons€n) = [a(n) --- a(n — ’ SNHM-L ;

d) --- a(n — N — M + 2)]7 is awindowof M + N — 1

. where
symbols, and(n) = [b(n) b(n — 1) --- b(n — M +1)]T isa 1 —ljx(n) — FTay|2
windowof M noise samples. $i(x(n)) = P
From a geometric point of view, each realization of the (2mop)M 20}
random vectorx(n) defines a point in and/-dimensional || - ||2 stands fod,-norm, andk; is theith combination ofV +

complex spac&™, and such points can be labeled according; _ ; symbols.
to the corresponding realization of the random variable one possible strategy to estimafeand o2 can be the

a(n — d), whered is an arbitrary decision delay. Moreover, i daptation of a parametric likelihood functid(f, o2) with
is straightforward to show that there a¥eclusters of points of onviar—1 Gaussian kernels toward the maximization of

the same label whose means—or “barycenters”—are given y{ln(l(f, o2))}. Nevertheless, it is well known [22] that the

e . X
the conditional means: practical application of this maximume-likelihood approach to

ffd blind identification is discouraged by the possibly prohibitive
— _ _ d—1 number of Gaussian kernels &f).

Ca, = Ex{x(n)la(n —d) = as} = a : () Inthis paper, we propose a specific smoothed likelihood func-
tion that highlights the link between likelihood maximization
and symmetrical clustering.

wheref; = 0if ¢ > N —1or¢ < 0. Forinstance, ina4-QAM  This smoothed likelihood function is formed by only
scheme, there are four clusters where each such cluster is agsissian kernels

ciated with one complex symbol in the modulation alphabet. s
Therefore, according to (1), finding these barycenters corre- q (f &2) _ 1 Z ! (x(n))
sponds to identifying the channel model coefficients. Further- b S —~ i
more, ifM > N andN — 1 < d < M, thenc,, is a function o
of all the channel coefficients (inversely ordered). -
If the symbol alphabet is symmetrically valued, as in the exp <—(x(">—éa;) RT* (x(m)—¢a,) )
S-PSK or S-QAM schemes, then it is clear from (1) that the é (x(n))
barycenters are also symmetrically placed in filedimen- ‘“
sional complex space. As a consequence, a straightforward
strategy to perform a blind channel identification is to apply a . e o
clustering algorithm over thé/-dimensional observations. (F F- Clcl> + 0y Ivxm @)
Moreover, in order to take advantage of tnpriori knowledge
about the symmetry between centers, we can also impose the F 0
constraint of symmetry between estimates, i.e., _0 _ £
d ~ ~ N —
J{—1 F=\fioe = o and ¢ = fd. '
C,, = as ) , as € {ag, as, ..., as}. ] )

fd—]\l—i—l

where

fd—l\/l—l—l

fd—M+1 | O fN—l-
In [17], we studied two approaches to perform chann&uperscriptd stands for Hermitian transposition, ardtands
identification using symmetrical clustering. The first one coffor conjugation.
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Note thatR, is the estimate of the cluster covariance matrix However, what can we say about minima in low tempera-
[see Appendix A for deduction of (2)] tures? Though a rigorous study of all these minima seems to be
too difficult (due to the imbricated dependencéh)c on f‘), we
R;=FE, {(X(n) — &))" (x(n) — &) | aln —d) = as} are able to approximately analyze one class of such a minima.

S This is made possible thanks to the following property of matrix
which is identical for all theS clusters.

R,.
l}low, a natural cost function for adjusting-) should be Property: Given0 < d < N+ M —2, the minimum eigen-

J(F, 63) = —Ex{ln(q(f, 52))}. In fact, we first derived a value ofR,, J, and its corresponding eigenvectas can be
stochastlc gradient algorlthm to minimize this cost funCUO%pproxmated by

and by computational simulation, we observed the following.

A ~ 2

a) The cost functiory is not necessarily convex. Moreover, AL) fo . = a2 18 = G=48all; | Ty

the number and the “deepness” of local minima.Jof “ |h.]3 2

are related to the estimated variangg. This means . -l

that wheneves? is reduced, local minima of became A2)ho =h. = (FHF) s,

deeper, and we can also observe the “birth” of new

minima. whereg. =F -h_,andé; =[0 --- 010 --- 0]7 (the Lis at
b) Consequently, we observed that simulation trials startiige dth position).

from a relatively high parametét’ (high w.r.t. the actual Proof: See Appendix B.

noise variance) have a stronger probability of finding a Thanks to these approximations, it is clear that for a channel

good channel estimates. without spectral nulls (for which a FIR zero forcing equalizer

Fortunately, these empirical results can be explained by tgy provide good equalization for finite valuesid for values
theory behind deterministic annealing [23], [30], which is &f A not too small (which corresponds to the length of a “vir-
technique inspired by the existing analogy between optimiz&<al” zero forcing equalizeh. ) the second term of A1 predom-
tion problems and statistical physics. inates. Moreover, sincg, is a control parameter, whe, /2 is

In order to take advantage of this theoretical background, weade much smaller than any other eigenvaluBgfthanks to
adapted deterministic annealing to our specific problem. THige singular value decomposition theorem, for most of the chan-
adaptation is straightforward [17]: We simply replace the noiseels, we have (see discussion in Appendix D)

variance estimate by a “temperature parameter,” and then, we N I
control this parameter while the stochastic minimization of the A3 R = h.h /A,
cost function is going on. Furthermore, the resulting cost func- Now, we are able to study the cost functida throughout
tion is a slightly modified version of, i.e., approximations A1-A3. First, we expand the cost function as
Je (f, Tp) T, - Ex {ln (q (f7 TP))} : (3) Je (f, Tp> =T, <E {ln ((j)l(x(n)) 4+ -4 ¢5(X(ﬂ)))}

Note that in this case, we do not estimate the noise variance.

According to the physical analogy, we have thepriori N o
knowledge that the number of local minima $f increases —In{ s ‘ 5| (2m) )
whenever the temperature goes down [23]. Actually, the
number of local minima changes only at specific values of In the stochastic adaptation algorithm, we intentionally ne-
the temperature. For example, at very high temperatukes, glect the dependence B, onf; see Section IlIl-B. Then, we
has only one minimum at the origin, and the first transitioshould concentrate our attention only on the first term of (4),
occurs whery, = 2)\max, wherel... is the largest eigenvalue where the application of A3 to the Gaussian kerrz¢e(s) leads
of R, = aQF”F + 02Ipx - On the other hand, very low to
temperatures may cause an excessive number of local minima. - R .

Operating between these two extremes, the annealing process ##(%) & exp (—(x— &) h:h(x - &.)"/(2).))
tries to reach the global minimum by starting the optimizatiogiven that¢’h. = a,g.,, then
process at high temperatures and keeping the process going

while the temperature is slowly lowered. ¢s(x) m exp (—|y(n) — asg:,[7/(2X.)),  s=1,...,8
_ T H [N ” _ H
A. Cost Function Analysis Whergy(n) = x(n)* h, is the output of a “virtual” zero-forcing
equalizer.

According to [23], the cost function in (3) is convex when Now, since we get a winner centefor each realization of
Tp > 2Amax, Whereh,,, is the maximum (in absolute value)the random vectok(n), it is useful to associate this center to
e|genvalue ofR,. Moreover, in our specific case, due to thg@he random variableax(x(n)) = max,_ 1, s(ds(x(n))),
cluster symmetry, the minimum of this cost function is at thgnd to be coherent with usual notation, we should say that

origin (a null vector). the symbola, associated with the winner center is an emitted
Then, itis evident that we are looking for minima of the cos§ympol estimaté(n — d). That is to say that

function for low temperatures. Unfortunately, in this case, the

cost function is not convex. That is why we use an annealing a(n — d) = arg max (J)S(x(n))) .
strategy in order to track the deepest minima while the cost func- a.CA

tion changes. 2The closest one in Mahalanobis distance.
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Then, we obtain B. Algorithm
We have used a stochastic gradient method to find a minimum
. . of J¢ by adapting the estimated channel coefficients. Therefore,
Je=-T, | E{In | ¢max + Z ?s we need to calculate the gradient
s¥max ~
V.Je = —2T,E o\ 1r)) (q (f’ Tp)) )
—In <‘f{5 S (27r)M> e T T ot '

Nevertheless, it is worth noting thRt, depends ofiinsucha
- N _ a2 way that determining this gradient is quite a difficult task. Then,
Whereguax & exp( |y(_”) a(” d)_gzd| /(222))- we preferred to adapt the algorithm as follows.
From these expressions, it is straightforward to observe the = _. . .4 .
. * Fix R while adaptingf (stochastically, one step).
following. s .
* RecalculateR ; (analytically).
* When the temperaturg, is high, relative to the variance The stochastic adaptation bis done by

of x(n), distances computed in dln (q (f‘, Tp))

FRHD = £0) 49T, i (6)
_Tp “Eqln d;max + Z (;)S where
sFEmax S G —1 g%
9ln(g) > ard; exp (4_(1?%5 < )
. 1nq S — i=
tend to be numerically closer to each other, and then, the 9F vt =PR;H= s P,
“winner center” is not clearly observed. R, =ete 23 exp (#)
¢ On the other hand, for low temperatures, and wién i=1

which is length of the virtual zero-forcing equalidey, is  where
big enough to allow a good zero-forcing inversion of the 0 1
channel, if the estimat®is close to the channdl up to

a phase rotation and/or a delay shift (f8r > N), then di=x—¢&, and P=
the channel eye is open, and the summation in the cost 1 01 nrxar
function is dominated by the term associated to the winnerin order to underline the clustering nature of this algorithm,
center we can alternatively rewrite (6) as
. | 5 (<0
_TP ~EQIn | dmax + Z Ps égk—i—l) = égk) + ’}/Tp (ﬁ;l) =1 -
sEmax Z exp (—d?R;ldj)
. ‘ 2
~ _Tp B {ln (d)max)} ~E {(y(TL) - &(71 - d)gZd)Q} . =t (7)

Then, we can see that in this clustering algorithm, the

It is worth noting that the expression on the right sideVinner-takes-all” rule is replaced by something more pow-
of the equation, forg,, ~ 1, coincides with a mean erful, i.e., all distancesl; are linearly transformed by the

v 1z ) ’ o . S 1 “
squared error decision directed (MSE-DD) cost functiofverse of the cluster covariance matRx". Then, these “cor-
since it measures the mean squared deviation of the Jgcted metrics are weighted by the negative exponentlal of the
tual ZF equalizer output from the implicit symbol decisiofahalanobis [6] distance between the observaticand each
a(n — d). centere;. Finally, a “generating centeg; is updated according

g this weighted summation of corrected distances. Note that
P{mmetry between centers is assured because the adjustment
8f all centers is made in one go, through the adjustment of the

It is an interesting result because the MSE-DD-based al
rithm leads to the lowest steady-state error among all blind
gorithms [19], although it is not able to open an initially close .

generating center.

channel eye. On the other hand, applying deterministic annealing ap-

In contrast, we have observed by simulations that the ¢ Bach, we exponentially lower the “system temperature” (in

function Je is able to open a channel eye at high and mediuglj;ce of the estimated noise variance) while using the stochastic
temperatures, and according to the approximations shown Badient to adapt parametér (or, equivalently,f). Indeed,

viously, it converges to a MSE-DD cost function when the ey ding to some heuristics that we are not going to present

° '?’EZ?}S a very worthwhile feature for a blind cost functionhere' we usually apply an exponential annealing rate where
(0) ~2 N'S) ~2 .

Indeed, as it was commented in Section |, some algorithms p;‘r- < 2.M0“f and 7, e 20.‘)’ and N5 IS the numper O.f
N ! 2 ."observations to be considered in each on-line annealing trial.
posed in the references force such a mixed behavior in their S0, exponential annealing rate leads to the following temper-
lutions. Here, we have obtained it naturally, as a consequenge

of the chosen cost function and thanks to a property of the esahEjre updating expression:
mated covariance matrik.,. T# =701 —n)* (8)
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wherey = 1 — 1000810 TP —login TI)/NS |t is directly com- IV. SIMULATIONS
puted from (8) fork = N S.

Clearly, in such an approach, we need first to estimate t[]
received signal variance?, as well as the noise varianeg,
which are both supposedly stationary in a framé&/¢f symbols.
Fortunately, we have observed that even if we have a reason
“guess” about2 ando?, the effect of bad guesses seems to

In this section, the proposed algorithm is compared by sim-
fation to two different algorithms for blind channel identifica-
tion. First, we compare our algorithm with the well-known algo-
rgi%m by Porat and Friedlander [21] based on higher order statis-
ICS (HOS). In fact, in [21], two off-line (block) algorithms are
negligible for practical purposes. proposed. We are going to compare our algorithm with the most

Concerning the channel length estimate, since we Suppgggverful of them: thenonlinear least square estimatiqn algo.-
that all coefficients to be estimated are nonzero, we fix the d4hm. After that, we also compare the proposed algorithm with

timated channel order equal to the lengthxdf): N = M. the algorithm provided by Yellin and Porat [32], which uses the
Furthermore, we also fid = NV — 1. finite alphabet constraint (as we do). Finally, we address identi-
The resulting algorithm can be summarized as follows. fiability and convergence issues by means of illustrations.
Initialization: In order to make the first comparison, we use the same per-
Setf® =10 --- 010--- 0] (the 1 is at theith formance measure: the residual intersymbol interference (RISI),
position),, TISO) andT]gNS). which is defined by

Computey = 1 — 10U T 7 —logyy T,")/NS P 2 2
For k :pl t%nNS, do the following. RISI = 101og, ((g & — max g )/mzaﬂgi' )

* Analytically computeﬁgk) from (2).

« Stochastically updat&*) from (6) [orégk) from (7)]
for every realization of(ko + k), wherekg is an b
arbitrary offset index. y

« Lower temperature according 1" = 7¥ V(1 — o -1
n) [equivalent to (8)]. hyy = (O'gFng + f}fIMxM) P

End.

Thanks to theveralllearning-rate parameter adaptation [thehered is an arbitrary decision delay set in this first comparison
resulting value ofy7;, in (7)], the proposed algorithm is some-with d = 36. Note that likeF, Fy is also a convolution ma-
what similar to Kohonen’s self-organizing map (SOM) [14]trix, but in the following simulationsF' has only five columns
which is a classical neural network algorithm. This equivalen¢becauseV = 5), whereask';;s has 65 columns (because the
is helpful because it can provide us with some insights iniiener equalizer has 65 inputs). We emphasize that the Wiener
the performance of this new identification algorithm. Nevertheransversal equalizer is a separate block since the proposed al-
less, the proposed algorithm has a significant particularity: tgerithm only performs channel estimation and that the choices
symmetry constraint, which is obtained by the adaptation of @} 65 taps and! = 36 are made in order to fairly compare our
the centers at once, through the adaptation of the “generatifihnnel estimates with those in [21] since it was what they also
center.” used.

The modulation scheme is the 4-QAM, and the channel
model is represented by = [2 — 045 1.5+ 1.8 1 1.2 —

Given the clustering nature of the proposed algorithm, if clus-3; 0.8 + 1.65]*. Furthermore, the signal-to-noise ratio
ters of observationx(n) are not overlapped (or just slightly (SNR = 10log(02/02)) is 40 dB.
overlapped), the algorithm is able to find the cluster centers or,Note that since this channel presents two in-band near nulls
equivalently, a channel estimate. Moreover, if the channel do@ge Fig. 4), blind equalization of this channel is quite a difficult
not have spectral nulls, as shown in Appendix E (see also [k4kk.
for more details), we can improve the separation between clustefigs 1 and 2 illustrate, respectively, the two identification al-

by cTangir;g thhehdimﬁnsiﬁn of tlh.e observation vestor), re- %orithms coupled with two linear transversal Wiener equalizers
gardless of whether the channel is minimum, maximum, or Nolith the same number of taps.

minimum phase. We would like to underline that unlike Porat and Fried-

The_n,the proposed a_lgorlthm is theoretically ableto_deal W'Hinder’s algorithm, the symmetrical clustering algorithm does
any kind of channel without spectral nulls, but special atten

tion must be paid to the dimensions of the observation vectgp® estimate the noise variangp. Instead, we set it to a small

For instance, channels with near-nulls demand higher valuesvg‘}ue Just t(.) getR_S nonsmgAuIar, even whefi ~ 0. In the
resented simulations, we sit = 0.01.

M (=N) for the algorithm to work properly. Pres ) o .
Since we assume that r priori information about the Simulation results are shown in Fig. 3, where each point was

channel is available, we arbitrarily choose a “not too smalpveéraged over 100 Monte Carlo independent e

length for f, keeping in mind that it also corresponds to the N these trials, the initial temperature was setfd = 6,
dimension of the observation vector. On the other hand, evé final temperature was setfy"® = 0.05, and the gradient

if we know the length off, we typically useN = 2N in step was setin the ranged1 < v < 0.03. These choices were
order to leave enough places for eventual delay shifts on thi@de empirically.

estimate (we initialize the estimator wifr --- 1--- 0]¥; see  We can see that for more than 4000 samples, the on-line clus-
Section IlI-B. tering algorithm provides a better channel equalization than the

whereg = Fhy corresponds to the combined impulse re-
sponse of the channel and a Wiener transversal equalizer given

C. Class of Channels That are Identifiable
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x(n)

5 T T T T T T
Nonlinear least squares estimation algorithm L ° Nonlineﬁr off-li;ne (blo.ck) HO'S
(block algorithm) [21] : : L :
algorithm [21] :

ok
2 A
f,crlf

T 1 Equalizer: | Y(®) atn-dy :
l'al'lsvel‘s::l1 qualizer . dec(.) ] SRR
14

I Symmetrlcal chisleringi 0 n-liné algorithm

R1S1(dB)

Fig. 1. Nonlinear least square estimation algorithm coupled to a 65-tap Wier ~ -1of--
linear equalizer.

-15
4 Gaussian Kernels : : : :
x(n) .20 i i i i i i i J
0 1000 2000 3000 4000 5000 6000 7000 8000
NS
Fig. 3. Simulation results. Performance versus number of symbols. Two
algorithms.
x(n)
20 T T T
x(n—4) §
8 10_ .................................
z .
© i
9 1 ..
2 :
£ Cd
&
2 N
0 . ¥ .
- A 0 8.5 1 1.5 2
Transversal Equalizer: | y(#) an—dj
b0 dec() Normalized frequency (Nyquist=1)
W
200 T T T
Fig. 2. Symmetrical clustering algorithm coupled to a 65—tap Wiener linear : L -
equalizer. : v
100 :

egrees)

off-line (block) nonlinear HOS algorithm of Porat and Fried-
lander. However, although we observed a high convergence ratir®
among the independent simulation trials (100 trials per point), £
we note that the clustering algorithm may eventually have a poonm -100
convergence (toward spurious minima of the cost function) in : < o
terms of RISI. 20 i i i
Moreover, since our algorithm is on-line, the period of time of 0 0.5 1 1.5 2
one annealing trial isV.S - At¢, whereAt is the symbol period.
For instance, according to the simulation presented in Fig. 3,
we can get an RISI of about17 dB in8000A¢t s. Therefore, it Fig. 4 I_:requency responses of the channel before (dashed line) and after
is clear that in this algorithm, deterministic annealing does ngfuization
result in long bath simulations (which is frequently the case with

Normalized frequency (Nyquist = 1)

probabilistic annealing). For the second comparison, we got the longest channel
Fig. 4 shows the frequency responses of the channel befased in [32], which illustrates a telephone channfel: =
and after equalization for 8000 samples. [0.06 0.02 —0.60 —0.05 1.30 0.01 0.36 0.02 0.10 0.01 0.02]*

Results presented in Fig. 3 were obtained for a SNR of 40 d&)d BPSK modulation.
which is convenient for comparison with the results presented inBy using their algebraic approach and then applying their
[21]. Nevertheless, Fig. 5 illustrates the symmetrical clusterirfpannel estimate on a least squares FIR approximation of the
algorithm for the same channel but with a SNRL5 dB, com- inverse system (a transversal equalizer), Yellin and Porat ob-
pared to that for 40 dB. This comparison provides a rough id&sined a mean square erfdSE = E{y(n) — a(n — d)}) of
about the effect of the SNR on the algorithm performance. —17.2 dB for an SNR of 45 dB.
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-20 Fig. 7. BPSK, 150 randomly drawn channels (with three coefficients) per
o 1000 2000 3000 4000 5000 6000 7000 8000  nojnt, ten independent trials per chann¥l,= M = 7, NS = 4000, linear
NS equalizer length: 11 tapg,(” = 2, T{M = 0.01,y = 0.01.
Fig. 5. Simulation results. Performance versus number of symbols. Two SN® , &
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D 14t
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-26 1 L .
10 15 20 25 Fig.8. BPSKf = [0.51]7, N = M = 4, SNR= 40 dB, NS = 4000,
SNR (dB) T = 3,T{V5 = 0.01,5 = 0.02. Oone single trial.

Fig. 6. BPSK, telephone channéi, = M = 11, NS = 2000. Wiener d v d h | ind d . . ial
equalizer length: 11 tapg® = 1, TS = 001, 7 = 0.02. Fity fandomly drawnc annels (ten independent estimation trials per

independent trials per point. channel) versus SNR. Channel estimates were then used to im-
plement MSE linear transversal equalizers. Finally, the MSE
equalizer performances for the actual channel and its estimate

In contrast, we tested our algorithm with the same channgére put together in Fig. 7.

for a range of noise levels. Fig. 6 shows the performances weNote that channel coefficients were independently drawn

obtained, as well as the optimum MSE for a linear transversadm a Gaussian random source with zero mean and unit

equalizer with 11 taps. Note that for a SNR beyond 25 dB, ouariance. It means that no restrictions were imposed, and all
algorithm provides a MSE lower than20 dB. classes of channels were potentially used in this simulation,
On the other hand, the algorithm by Yellin and Porat coriacluding those with spectral nulls and near nulls.

verges after about 580 symbols were emitted, whereas we havEinally, to illustrate the effect of temperature parameter on the

used 2000 channel output samples to get the results showrlannel estimation process, as well as to illustrate the on-line

Fig. 6. evolution of estimated coefficients, one single estimation trial

Evidently, the convergence of our algorithm depends dor f = [0.5 1] andf(© = [0 100]* is presented in Fig. 8.
channel characteristics, cooling rate, and the stochastic gradierih this trial, we set a high initial temperature. Consequently,
step. In fact, a theoretical analysis of the dynamic behavior wk can easily observe that for the initially high temperatures, all
this algorithm has yet to be made. coefficient estimates roughly tend to zero (500 initial iterations).

In order to get a feeling about identifiability and convergencé/e also can observe that the two additional coefficients of
issues, the average RISI performance was computed over tb@verge to zero at the end of the annealing process.
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V. CONCLUSIONS AND PERSPECTIVES Since matrixF', has a null row that multiplies the only term
t%pendmg oru, in the equation, i.e. |a5| /o2, the resulting

A new blind channel estimation algorithm has been presen
W@tnx does not depend an, and it follows that

in this paper. This algorithm uses a smoothed estimator of t
s_ampled signal pdf, which prov_ldes co_ntrol over the com_put_a— R, = o2 (FH _ Ff) (F _ Fc) T SIS
tional burden commonly associated with the maximum likeli-
hood estimator in these cases. Finally, thanks to the following identitiesF 2k = FHF, =
The chosen cost function came from the analogy between e i, — ¢+¢7 | it yields
formulation of our parametric estimation problem and phyS|caI ) .
systems free energy minimization. Such an analogy provides a R, =0 (FHF — é’{élT) + o3 Inrxnm
straightforward implementation of the deterministic annealing
scheme in order to cope with local minima problems.
We have shown that the final algorithm is, from a certaiR- Proof of theR, Matrix Property
point of view, a clustering algorithm, where a constraint of sym-  Proof: By definition, the minimum eigenvalue ®t, must
metry between clusters centers is imposed. Furthermore, #agisfy
“winner-takes-all” rule commonly associated with most clus- .
tering algorithms is replaced by an adaptation rule that takes 3o = min <hHRsh>

9)

into account all centers. As a result, this clustering algorithm hZh

is similar to Kohonen'’s self-organizing map (SOM), which is a

classical neural network algorithm. Given the definition ofR,, after some algebraic manipula-
Nevertheless, despite this helpful similarity and the good sirlons (detailed in Appendix C), we obtain

ulation results obtained up to now, some new aspects of this ap-

proach give rise to questions concerning the optimization of the 2N+M_2 T
algorithm parameters. Clearly, in order to optimize such param- . %a Z 19:" = 14l T
eters, a theoretical analysis of the proposed cost function seems ~ Ag = miny, =0 5 + £
to be necessary. Indeed, this is an open subject toward which our [l 2
future work will be oriented.

APPENDIX whereT},/2 replaces? in the definition ofR., [see (2)].

An approximate solutiom, can be obtained by forcing the

A. Calculation ofR, dth element 0§ to be as close as possible to 1 while assuming

that||h. ||2 = 1. Thatis, the minimization of the right side of (9)
is approximately equivalent to the minimization|g — 84|53
Consequently, the vectdr. that satisfies it is given bhé =

For the calculation oR,, an useful auxiliary matrix can be
obtained fromE by keeping only theith row of F and setting
to zero all the rest:

0o ... o (FHF) FHs,, andg. = Fh.. O
Fe=|fa - famn C. Rayleigh Quotient Manipulation
0 - 0 (N+M—1)x M. Given the Rayleigh quotient
Thanks to this auxiliary matrix, we can write o Wi R, h 0
(x(1) = &0 atnsyma, = EFaln)| +D(n) r(b) = i (10)

whereR, = o (F”F - é{élT) + 67T andef is thedth
row of F, i ie.,ef = [fd fd_l -+ fa—m+1], we can handle the
a(n)|a(n7d)=as =la(n) - a, - aln— N —M+2)]¥ numerator as follows:

where

~ ~ ~ HA HyHT; HAax AT 2. H
andF, = (F — F.). Substituting it in h"R,h = o (b"F"Fh — h"¢fefh) + o7h'h
~ _ 2 ~ 112 ~ 2 2 2
R, ZEm{(x(n)—éas)* (x(n) —6aS)T‘a(n—d) :as} =0, (IIgIIQ— |9l )+ab Bl - (11)
gives Applying (11) in (10) and replacing? by 7'p/2 (temperature

. . . parameter), we obtain
R, =FIE, {a(n)*a(n)T|a(n —d) = as} F, , ,
+ B, {b(n)*b(n)T} o2 (lglz — 194?) + (Tp/2) I3
1 0 [

E 2 (11512 _ 1412
L : A o2 (1l - 1)
Rs :O’QFH |as| /03 Fa +O—EI1\4><J\4~ r(h) = || ||2 | | + @
: N 2

0 1 3These are easily verifiable since, by definitidh, has a single non-null row.
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D. Some Considerations About the Eigenvalueﬁpf (5\1) will approximate the minimum onei()) only if the two or-
It is easy to show with examples that givén M, and d, thogonal vectorsl{y andh, ) are both mapped onto a new space

if a zero forcing (ZF) equalizer provides a cascade (estimateg2nned by the columnsFf(linearly independent vectors) near

channel + ZF equalizer) effect close to the ideal (ge.~ 6,) ©ach other, where both are close to the vegjor o
then, forT, = 0, the smallest eigenvector &, o, is much Although this is not necessarily a contradiction, since it de-
smaller thgn any other. pends on the characteristics of the space spanned by the columns

Forinstance. lef — [~0.440.37 140.5j 0.6—0.15]T, M = of F, we expect, and this can easily be verified with the help of
10, andd = 7 (arbitrarily choseh), we obtaiﬁno _ 6_001102’ numerical examples, that the orthogonal veclgyandh, are,
whereas the minimum eigenvalue among the remainiﬁg is Inmost cases, mapped onto near-orthogonal vectors of the space

0.514402. It is also worth observing that the ratio betwekn spanned by the columns &t

and ), increases withZ. For instance, by increasing from S & consequence, in cases whgrex 84, ho corresponds
10 to 12 in the previous example, we have= 0.000102 and © @ ZF equalizer, whereds does not. Then), (which is pro-

~ : M4+N-—1
AL = 0.509102. portional tod ", "~ |g1, |2 — |91.|?) tends to be much greater

3 e : MAN—1
Unfortunately, producing a rigorous proof of this propertfh@nAo (which is proportional t=; =™~ |go, [* — |90, 1)-

turns out to be quite difficult since it depends on the chara
teristics of each channel model.
However, some analytical clues will provide us with a littl

E. Relationship Between the Observation Space Dimension
eand Separation Between Classes

more than just numerical evidences. A'f"}?} 2|3t {aa,,i}, {5%2\;175\74- -2-7{511_s,i}7i = 1.
From (2), matrixR, is clearly Hermitian, and thus, its eigen-5" %, be S sets of 5™ ¥~ distinct column vectors of
vectors form a vector basis (i.e., they are mutually orthogonafyymbols. Each setis labeled with the valueofs = 1, ..., 5)
Now, leth, be the eigenvector dR, corresponding td,,, at thedth vector row, which is identical with all vectors in a set.
which is its minimum eigenvalue. According to approximation Similarly, 16t {X, i}, {Xa, i}, .-, {Xas,:} be 5 sets of
A2, b, approximates the ZF equalizhr noiseless vectors df/ consecutive channel outputs given by
) =
On the other hand, for the eigenvector of R, corre- Xo.i=FTa, ; i=1,..., SN+M=2
sponding tox; (the eigenvalue oR., closest to)g), it can be s=1 g (13)
shown that o

CFRA Each set (or cluster of noise-free observations) is thus asso-
Ay = Lol ciated with a clasg¢’,, according to the value of,.

hi'h; On the other hand, if all zeros of the polynomial channel
model F'(z~1) are non-null, then an equalizer that attempts to

According to Appendix C, it is equivalent to . . X i
9 PP a achieve the inverse of the channel transfer function, with a pos-

. o2 (||g1||§ — |g14|2) Tp sible time delay, has the following transfer function:
A= —=
. E 2 Hy(zY =2 9F (Y,  d=0,1,2,... (14)
whereg, = £ hy. where an appropriate delayis prevented from noncausality.
Now, let7}, = 0 and assume by hypothesis that ~ \o: Concerning this ZF equalizer, the following is well known
then [10], [19].

a) Forfinite-length channel models, the optimal ZF equalizer
corresponds to an IIR filter.

b) In such a case, and given that the channel model has no
spectral nulls (or, equivalently, that d&(»—1) zeros are
allowed on the unit circle), a, FIR filteH (»~1) with a
suitable number of taps—a truncated and delayed inverse

1&0ll3 — 0. 1% ~ 18113 — |g1.1*. (12) of the channel—can provide a good approximation to the

A special interpretation of (12) corresponds to those cases optimal ZF solution.
where good ZF equalizers are obtained, i.e., wigen: 8,. In ¢) The bigger the number of taps of the FIR equalizer, the

such cases, for the approximation (12) to hgjdmust also be i:lc:ser the cascadg = f * h, and§, becomes, where
. = «" stands for convolution, ang, f, andh are column
a good ZF solution for the same delay decisibn

o . vectors of the corresponding polynomial coefficients.
Fho ~ Fh; ~ §,4. From this perspective, the optimum ZF equalizer is the
best linear discriminant [6], [30] since the projection of
any vectorg,, ; onto it yields its labek,. Similarly, for

the truncated ZF equalizer, this projection yields a scaled
version of this label plus a residual bias, as shown in the
following.

A2 o ~ 2 o
[goll> = [goul* _ lI&1ll> — 191l
2 -~ 2
[Iholl5 [

Since||ho||5 and||h, ||; are irrelevant here, then, without loss
of generality, let us assume thfto||> = ||y |3 # 0, yielding

However, keeping in mind thdh, andh; are orthogonal
eigenvectors and that the columnsiofre not linearly depen-
dent (because they are shifted versions of the same finite length
vectorf‘), we finally get the following scenario: If a ZF equalizer
provides a cascade effect (estimated charn@F equalizer)
near the ideal one (i.eg. = &,), a nonminimum eigenvalue “Equivalently,G(>~') = F(z:~)H(z"') — 2—¢,
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(1]

(2]

(3]
(4]
(5]
(6]
(7]

(8]

El

(10]

(11]

According to (13), we have

i=1,..., 8NtM=2 " s—1 ..

, S

(18]

and sinceg, = f xh, = Fh_, then

[16]

TS Tz
hz xa57i :gz aa57i

T~
h X, i =gaa. +7es

whereres is the sum of all nonzerg;,, k£ # d multiplied
by their corresponding symbols in vecty, ;.

Clearly, asg. — 6y, 7es — 0, andgyas — as.

It is worth noting that according to c), this ZF solution
can be improved by increasing the number of taps of the
linear equalizer. Note that this number of taps can alsd
be regarded as the dimensibh of the space spanned by
vectorsx,, ;.

Finally, considering the symmetry of the symbol al-
phabet (around the origin &F), the values of-cs for all
i=1,..., SNTM-2inside each class are also symmet-
rically dispersed around the origin €f, and this disper-
sion is identical for allS classes. As a consequence, the
minimal distance between vectatsof different classes,
i.e., the separation between classes, is increasecsas
minimized. Moreover, according to b) and c), for channel
models that do not have spectral nulls, the augmente{—

tion of the separation between classes can be obtained Ipg]

increasingM, that is, the dimension of the observation
space ofx(n).

(28]
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