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ABSTRACT () One general approach to regularization is based on the
Probability density function estimation from limited daigts addition of a regularization term to the unconstrained
is a classical problem in pattern recognition. In this paper criterion function, which expresses constraints or de-
we propose a reformulation of the well-known nonparamet- sirable properties of solutions.

ric Parzen method as a parametrically regularized Gaussia
Mixture Model, from which we can easily estimate density
contour level. As an application illustration to the propds
contour level estimator, we also address the Blind Sourpe Se
aration problem through the analysis of contour level disto
tions in joint probability density functions. Finally, wesel
the proposed estimator to undo a nonlinear mixture of two(lll) For Mixture Models, regularization can be easily ob-
images. tained by imposing constraints on the mixture compo-
nent parameters (e.g. by imposing constraints or lower
limits on the covariance matrix of Gaussian kernels in

n(II) For models obtained via clustering-like algorithmis-(i
cluding the EM, which can be loosely seen as a soft
clustering algorithm [4, 7]), a straightforward regular-
ization approach is that of averaging estimates from
many independent initializations.

Index Terms— Parzen method, GMM, PDF Contour Level
Estimation, ICA, BSS.

GMM).
1. INTRODUCTION (IV) Conexionist models (e.qg. artificial neural networkahc
also be regularized, or partially regularized by pruning
Probability Density Function (PDF) estimation from lindte [8], though it is not always explicitly referred to as a

data sets is a classical problem in pattern recognition, for regularization procedure.
which many approximated solutions are presente_d in.Iiter— On the other hand, the nonparametric Parzen method [1,
aturg [1]. In this work,. we focus on PD,F apprOX|mat|ons4] can loosely be regarded as a mixture model based method
provided by Normal Mixtures, or Gaussian Mixtureé Mod- it srongly-constrained mixture components (categtijy |
els (GMM)' In these models, "900‘_’" mixture parameters (-8-The parzen approach gives an instant PDF approximation (no
Gaussian kernel means and covariance matrices, as wedl as {firations) and, in spite of its simplicity, itis known thander
mixture weight of each kernel) can be found in many waySgome constrains on its window width parameter, the conver-
such as th.rough the well-known Expectatlon-MaX|m|zat|ongence of the estimated PDF with the actual one is guaranteed,
(EM) algorithm [2]. ) ) _ when the number of samples tends to infinity[1, 9]. In other
Although the EM is not the fastest algorithm for mixture 5,45 many smaiisotropic (radial basis) Gaussian kernels,
optimization [3], itis usually simpler to apply, which caam it igentical dispersion, can virtually approximate arymP
t@ally explain its w!despread popularity in many applicati “shape”. This corresponds to a trade from kernel complexity
flelds._ However_, |t_presents some.dralwba}cks [,4]’ SOme 0(felliptical kernels, for instance, typically obtained e EM
them linked to likelihood computation in high-dimensional approach) to kernel number.
problems, which can be true in some low-dimensional prob- Although EM and Parzen approaches come from differ-
lems as well [5]. In order to cope with these drawbacksgn haradigms — namely, parametric and nonparametric PDF
model regularization is a common solution. Indeed, modelg;imation, respectively — they share a striking strutira-
regularlggtlon IMPOSES constraints on th? Gaussian ntialXturilarity, whenever the Parzen method is based on Gaussian ker
compOS|t|op,wh|ch Increases generalization [6]. L nels. In both cases, the actual PDF is approximated by a
Regularization strategies can be roughly split into founyixsre of Gaussians. Therefore, hereafter we will refer to
categories, namely: estimates from both approaches as Gaussian Mixture Models
Thanks to CNPq agency for funding. (GMM).




In this work, we take advantage of the Parzen model sim-

It is well known that Gaussian mixture density estimates

plicity to develop a new PDF contour level estimator. Theare particularly problematic in high-dimensional spacéh w
whole estimation process includes Gaussian kernel opimiz relatively few training data sets [11], or even in some low-

tion through likelihood validation, and a deterministicyaal-
ing [10] like iterative algorithm which provides a graduiad-i
provement of the contour level estimate.

dimensional problems [5]. This drawback can be tackled with
regularization strategies. Indeed, one particularlyregng
regularization category is based on structural restrctibe-

Finally, as a straightforward application to the proposedtause it can simplify learning algorithms as well. Accord-
estimator, we address the blind separation of two indepgndeingly, in Section 3, we reformulate the Parzen method as a
signal mixtures from a very simple perspective: the geoimetr parametrically regularized GMM.
distortion of contour level in joint PDF.

In Section 2, the PDF estimation problem from a finite
data set is addressed, whereas in Section 3 we reformulate
the Parzen method as a parametrically regularized GMM . In
Section 4 a new PDF contour level estimation approach frOI’NOW’ let us reformulate the GMM Optimization prob|em un-
the Parzen model is proposed. Finally, in Section 5 an apjer very strong constraints on the parameter vector. Fist,
plication of the proposed PDF contour level estimator is il-constrain the placement of Gaussian kernel centeks tan-
lustrated. This application is based on nonlinear Indepetd domly chosen samples froA.

Component Analysis (ICA), from a geometric point of view.  For this purpose, we randomly split the data¥ento two
disjoint subsets: therototyping subsetP = {p;,p2,...,
pu } of sizeM, and theoptimization subseV = {vy,va,...,
vN_Mm}, consisting of the remaininy — M samples.

Given a data set of cardinalit}/, X = {x1,%2,...,xn}, Moreover, we want to use identical isotropic Gaussian
wherex; is a real-valued column vector of length, we as-  kernels with uniform weights in the mixture. Therefore, we
sume that these vectors are independent samples drawn frdurther impose thaR,; = %I anda; = 1/M, respectively,
an unknown multivariate probability density functip(x). fori = 1,..., M. It clearly corresponds to the following

We further assume that there is a suitable parametric apestrictions on the parameter vector:
proximation forp(x), given by a mixture of multivariate Gaus-
sian functions, i.e.:

3. PARZEN METHOD FROM A PARAMETRIC
PERSPECTIVE

2. PDF MODELING WITH GAUSSIAN MIXTURES

® =[a; =1/M,c; = p;,R; = 0] (3)

M wherei = 1,..., M.
p(x) ~ p(x|0) = Z a;g(x|ci, R;) (1) These restrictions lead to a Gaussian Mixture Model equiv-
i=1 alent to that obtained by the nonparametric Parzen method,
e = s, ey R T sands el S Caussn kel coi s 4 saple o
for the mixture parameter vector, and pPlyIng q y '
M
9(x|ei, Ri) = b(xlo) = (1/M) Y g(x|pi,o°D) (4)
i=1
1 tp—1
exp [-0.5(x —¢) R (x = ei)] (D) iy which the the only free parameter ds(see Equation 3).

(2m) P72 | R, |1/
This is a single scalar parameter, and optimizédghrough

corresponds to theéth Gaussian kernel of the mixture, with Jikelihood maximization, in this case, is equivalent toiept
mean vector and covariance matrix givendyandR;, re-  mizing o, which can be done in a rather straightforward man-
spectively. We furtherimpose that< o; < 1and>" 1, a; ner, by a simple exhaustive one-dimensional search, throug

L. a grid of values empirically set, according to the following
Accordingly, denoting the likelihood oft' by /(®) algorithm:

p(X|®), likelihood adjustment of a Gaussian mixture model
to a given PDF can be summarized as finding the optimal p
rameter vectoi®,, that maximizes the log-likelihoddg(/(®)),
ie.

aAlgorithm for o optimization

1. Rough variance estimation:for each sample fror®,
pi, the two nearest neighbors are found, and py,
so that a roughi-th variance estimate is provided by
o? = (||x; — x;||? + ||x; — xx||?) /2. Note thatM > 3.

®, = arg mgx(log 1(©))

If we do not impose any restriction o®, finding ©,
turns out to be a non-trivial optimization problem, to which
the Expectation-Maximization algorithm is typically ajgul

[2].

2. Setting the 1D likelihood optimization search grid:
the median value from all rough variance estimates is



taken, i.e. Log-Likelihood

1.4 oy,
‘ 5 . -500
02 = median(o?,03,...,0%) 1000
. -1500

fromwhich, we set.i, = \/07,/10, 00z = 10\/07, : ;g | Max. Log-Likelihood = - 61.4

andA, = /02,/20. 30001
3. Prototyping: from the prototyping subset, a Gaussian  -0.6 +——————————— 4000 -———————"

Mixture Model is obtained, where each Gaussian kernel ~ ~%4 X, 16 00, o 12

centerg;, is a sample fron®, according to Equation 4.

4. Optimization: Since the log-likelihood depends onthe gig 2 |sotropic Gaussian kemels (left) andoptimization
scalar parameter, according to: (right)

N—-M
log(l(0)) = Z log p(v;lo) (5) 4. CONTOUR LEVEL ESTIMATION FROM THE
= PARZEN MODEL

wherev; is thej-th (independent) sample drawn from

the optimization subset, we simply proceed with an exA potentially useful concern in probabilistic modeling afte

haustive 1D search for the standard deviatigrthat sources is the estimation of contour levels of PDFs, mainly

maximizeslog(I(v)). This search is done through a fi- that contour level bounding the 95% confidence region. On

nite set of values fos, corresponding to a regular grid the other hand, the simplicity of the described Parzen model

of real values fromo.... to o with grid interval thanks to the identical radial dispersion of each Gaussan k
min max

A nel, allows for a very straightforward approach to PDF con-
7 tour level estimation. In this section, we briefly presems th
For the Parzen method, the choice of the so calliediow ~ 2PProach.

width, o,, plays a pivotal role. Many methods for this pur-  NOW. leto be a control parameter, aifigs (o) the contour
pose are available in the Literature. The algorithm progosel€ve! 0f p(x) (see Equation 4) inside which the density inte-
here uses the very same working principles as in the cros@ral equals 0.95. Itis easy to see tfigs (o) tends to be a
validation method [12, 11, 4], butin a simpler way. Therefor Circle (respectively a sphere or a hyper-sphere/fo= 3 or

we should refer to this as a ‘simple validation’ method. D> 3) of radiusr = 1.965 whenever tends to infinity.
To provide an illustration, we consider the L-shaped joint /N other words, given a high enough we may assume
probability density functionp(z, ), shown in Figure 1. that almost all data points froi lie insideT'g5(o), which,

in turn, is almost a circle. This assumption is illustratad i
Figure 3 foraD = 2: compare the contour points represented
by *" (a circle of radiusr = 1.96¢) to the most external solid
line which represents the estimafég (o), for a high enough
7 ARNNY g.

AN Accordingly, in order to gradually approximalgs (o)

- (our goal contour level, not necessarily a circle), we ficst a
cept a naive first guess bf;(¢) — wheres = N,0, andN,
is a big enough Real scale factor — given by a simple sphere
of radius1.96 N,0,. Furthermore, continuou; (o) is rep-

Sample

(available observations) resented by a set of points equally spaced, i.e. a circuidr gr
of points onl'g5(c). Afterwards, the value of is gradually

) o - . ) reduced tas,, while each point on it is gradually adapted to
Fig. 1. An L-shaped joint probability density function minimize the following cost function:

The crosses under the 3D surface represent 168 data sam- J(x|o, P) = (p(x|o, P — g(r1.96|0,1))? (6)
ples, from which we estimate(z,, z2) from M = 20 sam-
ples randomly taken to be set as kernel centers, whereas tidaere||r; 96| = 1.96 and0 is a null vector. In 2D, it yields
remaining 148 samples are used to optimizeOn the left  the following stochastic iteration rule:
side of Figure 2, Gaussian kernels are represented bygircle
On the right side, there is an illustration of theptimization
through an exhaustive 1D search. Xnew — Xoid — (P(Xo1d) — 0.023)VH(Xo1a) (7



where0.023 & g(r1.96|0, 1) for a 2D multivariate Gaussian, Indeed, we limit our approach to the case whEgg(o,) is
andp(x,1q4) stands forp(xqi4|o, P). expected to be an uninterrupted single contour.
We highlightthatV(x,;4) is here a simple weighted vec- Specifically, wherp (s1) andp.(s2) are flat (uniform)
tor sum, thanks to the symmetrical and identical dispersfon distributionsI'g5(o,) is expected to be a square. On the other
Gaussian kernels in the constrained PDF Parzen model.  hand, linear memoryless mixtures of independent variables
Figure 3 illustrates the step-by-step contour level estimacause liner distortions of such contours, whereas, namline
tion of g5 (0, ), in @ joint PDF of two dependent variables, re- mixtures yield nonlinear distortions. This is illustraied-ig-
sulting from the nonlinear mixture of two independentimsge ures 4 and 5, with flat densities, and corresponding square
(see scatter plots in Figure 4). Further detail on the nealin contours.

mixture is provided in Section 5. From this point of view, any memoryless mixing of inde-
pendent signals can be associated to a thagR? — W?2,
o — Tys(0) where the expected contoliss (0, ), is mapped onto a new
(®)

closed contour, inV2. Consequently, whenever an inverse
map does exist, the de-mixing transformation is giveryby
wW? — R2.

Note that if we have at least a rough approximation to
p1(s1) andps(s2) (which is a common assumption in ICA),
we are able to easily infer an equally rough sketci¥gr(o, ),
if the sources are independent. For instance, independent
images with flat PDFs produce square contours, whereas in-
dependent speech signals with picked densities around zero
produce cross-like (‘+') contourBg;(c,). LetI'; stand for
this rough sketch, supposedly available whenever the kigna
] o source laws are known (or guessed).

T 4 v a1 s a2 Then, one possible way to findfrom samples is to look
for a space transformation that maps back the distorted con-
tour (from the mixture joint PDF) into the rough sketched
contourT'; (from the joint PDF of the independent sources).
Clearly, this approach has its application limited to srhoot
maps (i.e. linear mixtures or soft nonlinear mixtures), wehe
space distortions inside the contour level are well reprtese
by deformations along its border. The whole de-mixing pro-
5. AN APPLICATION CASE STUDY: NONLINEAR cess can be summarized as follows:
ICA a) FromX (samples from the mixed sources), a PDF model
is estimated according to Section 3.
To provide a straightforward application of our PDF contour ~ b) The contour level'ss(o,) of the mixture is gradually
level estimation approach, we address the problem of blindstimated, from a first radial contour guess, as illustrated
separation of independent signals from a mixture. It is well Figure 3.
known that linear mixtures may be separated through a de- c) The contour curvature &%;(o,) is computed and com-
mixing matrix, whose blind adaptation is guided by entropypared to theexpectedurvature of’;. A dynamic warping al-
based cost functions [8, 13, 14, 15]. gorithm [1] is then applied to find the “best” correspondence

By contrast, nonlinear mixtures demand much harder dehbetween points from the two contours (see illustration g Fi
mixing approaches. Fortunately, for mixtures of 2 indepenure 5).
dent signals, the simple visualization of scatter plots tay d) The corresponding points frofy;(c,) andT'; are
a helpful tool, which in turn is closely related to joint PDF given as input and target, respectively, to a adjustabla-par
analysis of resulting variables. metric nonlinear mapper. For simplicity, we choose a clas-

For instance, if samples from two independent signalssic Multilayer Perceptron (MLP) Neural Network (NN) to be
saysi(n) andsa(n),n = 0,1,2.. ., follow two known laws, this nonlinear mapper [8]. Furthermore, in order to limit
p1(s1) andpa (s2), respectively, then their joint PDE{s1,s,),  to a soft nonlinear mapping, we limited the number of hid-
equals; (s1) x p2(s2). Consequently, if the interval of values den neurons to 2 and, in our experiments, we trained the NN,
of s; (i = 1,2) corresponding to the highest valuegpfover  through the backpropagation algorithm, with very low iliti
which the integral ofp; equals 0.95, is a continuous inter- weights. This was done to induce the learning of quasi-tinea
val, then the correspondirig? region over which the integral mappings (i.e. smooth mappings).
of p(s1,s2) equals 0.95 is a closed contour, namedy (o, ). Finally, the trained NN — trained to map ba€k;(o,)

25 - % T ~T(1.96N,0,)

Fig. 3. Step-by-step contour level estimation
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to I'; — is expected to perform the inverse of the nonlinear
mixture f. Therefore, from the PDF contour level analysis, a
de-mixing device candidate is provided, and “good” estéaat
to independent signals; ands., correspond to the output
of the NN — not necessarily in the same order — when the
mixed signalsg; andz., are given as inputs.
Figure 6 illustrates this process with two 256x256 graylleve -

Target Contour (independent sources)

Estimated Contour
(mixed sources)

/v\\‘/
24 { Estimated contour i
concavity '

images as independentsignals. In this illustration, $fyrar- I N N

sy

respond to pixel graylevels, from 0 to 1, whereas the noatine .
orrespondences
m|Xtu re |S gIVen by (to be learned by a Neural Network)

_ tanh(1.2s(n) + 0.8s2(n)) — 0.1001 \\ .

0.8640 - « il
(5s1(n) + Ts2(n)) — 0.0477 b

= Estimated contour o ‘1‘?
x2 (n) 1 1 4276 % I :: concavity after warping i
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z1(n)

wheren = 1,2,...,65536.
To reduce the computational burden, the whole set of 2D
points from the mixture was randomly Subsampled by 10. F|g 5. Dynamic Warping between contour levels
This is to say thaft’ corresponds to a set of only 6,554 sam-
ples.

Afterwards, according o Section 2, was spllit into two Unfortunately, the source separation approach seems to be

dlsj_?_mt supzets’P and}), b?th with 3,277;ample2. 47 limited to mixtures of only two independent sources, other-
O provide Ssome visual comparison, FIgures 6 an presw&e warping algorithms for nonlinear alignment of surface

respectively, the “de-mixed” images from_ the proposed ap(or even hyper-surfaces) must be considered. On the other
proach and the well-known Fast ICA algorithm{13]. hand, the PDF contour level estimation approach, illusttat
here through the gradual shrinking of a circle, in 2D, is not
limited to the 2D case. Indeed, it can be easily extended to
higher dimensions, which will be addressed in the sequel of
this preliminary work.

Another important point to be addressed in the future is
that the success of the proposed contour level estimatorgdtr
depends on a very questionable assumption, according thwhi

5 e the contour level is almost a circle (a sphere or even a hyper-
5, x, o ‘ sphe_re) f_or a given “high enough”. Obwou_sly, su_ch an ap-
ol * proximation depends on the actual data dispersion, and a nu-
R X 0.2 e - . .
' ‘ e merical test must take place here. Indeed, a simple testwoul

be the comparison between the first spherical/ circularzont
guess and the first contour estimation (found after algarith
convergence under the highestvalue). If o is really high
enough, we should obtain a small distortion, otherwise, the
initial o must be increased until this test holds.

This paper presents preliminary results from a recently
started research study. Accordingly, it presents moretiitu
tions than solid theoretical results. Nonetheless, it {3oia
some interesting potential ways for developing new stiageg
Fig. 4. Nonlinear mixture of two independent digital images for nonlinear BSS, for instance. It is worth nothing that, in

the presented case study, with just two images, in spitesof it
simplicity, it is clear that de-mixing can only be achievaed b
6. CONCLUSIONS a nonlinear mapping. Furthermore, through visual inspacti
of the resulting images, we claim that the proposed approach
A new approach to PDF contour level estimation was predid the job quite satisfactorily, even though it does not use
sented, along with an illustrative example of how it can beany information-based cost-function, as is usual in Indepe
applied to the Blind Source Separation of nonlinear mix@ure dent Component Analysis.
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