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a b s t r a c t

We hypothesize that spectral masking may account for most of the gains in robustness against noise
using ensemble interval histogram (EIH) and zero crossing with peak amplitude (ZCPA) compared to
Mel-frequency cepstral coefficients (MFCCs). To test this hypothesis, we focus on this issue by comparing
two MFCC implementations for which the only difference is spectral masking. The comparison involved
biometric speaker verification tasks using two publicly available databases. The results confirm the supe-
riority of MFCC with masking, thus corroborating our hypotheses that masking is a key aspect for
improved robustness in feature extraction.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Speaker identification or verification is a challenging biometric
modality in which robustness remains an open question. Biomet-
rics is the science of establishing the identity of an individual based
on physical, chemical or behavioral attributes (Jain et al., 2007).
The human voice carries several levels of information to the lis-
tener: a message through words, the language spoken, the emo-
tional state and the identity of the speaker (Heck, 2001). It is
produced by an effort made by the speaker, initiated in his brain
and resulting in several neuromuscular commands and the voice
itself (Rabiner and Juang, 1993), characterizing the human voice
as a behavioral attribute. In this context, a biometric speaker recog-
nition system is defined as a computer system capable of identify-
ing a person based only on information delivered through his voice.

Mel-frequency cepstral coefficients (MFCCs) are frequently used
as a low-dimensional set of features to represent short segments of
speech. Since it was first conceived in 1974, MFCC has remained a
powerful sound representation tool as it partly mimics human per-
ception of sound color (Terasawa, 2009), and thus is popular in the
signal processing community in almost its original form. MFCC is
also applied to speaker verification. For instance, Ramos-Castro
et al. (2007) extracted 19 MFCCs from overlapping short speech-
signal frames and Hautamaki et al. (2008) used the 12 lowest
MFCCs as acoustic features.

Different operating conditions during signal acquisition
severely affect MFCC (e.g. headset type, channel response, back-

ground noise), which can lead to feature mismatch across training
and recognition. To overcome this problem, most approaches re-
tain MFCC as features but introduce some type of compensation.
For example, Hautamaki et al. (2008) used cepstral mean normal-
ization to remove linear channel distortion, along with RASTA fil-
tering and feature warping to achieve robustness against channel
and noise effects. According to the authors, ‘‘state-of-the-art text-
independent speaker recognizers use mean subtraction at the
utterance level, often referred to as cepstral mean subtraction
(CMS)’’ (Hautamaki et al., 2008), even though CMS may degrade
accuracy recognition of clean data (no channel mismatch).

Alternatively, noise compensation can be directly applied dur-
ing MFCC computation through spectral subtraction per band
and/or by changing the band logarithmic energy compression with
constant root functions (possibly with adaptive root parameters).
Nasersharif and Akbari (2007) compared four such strategies,
including a new one proposed by the authors and found that adap-
tive root energy compression and noise compensation in
sub-bands together outperformed all the others strategies in an
isolated word recognition task.

There are many strategies for tackling the so-called session var-
iability problem, roughly classified as: (a) feature domain compen-
sation, such as cepstral mean normalization and RASTA; (b) score
domain compensation, such as HNORM (Reynolds et al., 2000);
and (c) model domain compensations, which includes subspace
and factor analysis methods (Dehak et al., 2011; Kenny et al.,
2007).

In the present study, a simple change in MFCC computation
involving spectral masking is presented as a strategy for improving
robustness. We compare MFCC to two main alternative features,
the ensemble interval histogram (EIH) (Ghitza, 1994) and zero
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crossings with peak amplitude (ZCPA) (Kim et al., 1999). We show
that these alternative features use spectral masking, which may
explain their reduced sensitivity to external noise. The EIH tech-
nique is based on the assumption that there are dominant frequen-
cies in limited bands of the signal (voice) spectrum, so the inverse
level-crossing length accepts values around the dominant fre-
quency, providing great robustness against noise, but making it
strongly sensitive to the choice of levels in the level-crossing detec-
tor. ZCPA is an alternative approach in which the peak amplitude
between adjacent zero-crossings is used as a nonlinear weighting
factor for the corresponding frequency bin, providing a lower com-
putational burden compared to EIH.

We hypothesize that the spectral masking effect, explained in
Section 2, is the main reason behind the superiority of EIH and
ZCPA. In Sections 3 and 4 we show how EIH and ZCPA use lateral
masking, whereas MFCC does not. In Section 5, we propose a sim-
ple modification of the MFCC algorithm to allow for inclusion of
the missing masking effect. The resulting improved robustness
against additive white Gaussian noise (AWGN) is demonstrated
in Section 6. Finally, biometric experiments on speaker verification
in Section 7 clearly show an impressive performance gain, thus
corroborating our initial hypothesis.

2. Spectral masking and auditory filters

Psychoacoustics is the study of subjective human perception of
sounds. In this field of study, a well-known empirical observation
is that in some situations, an otherwise clearly audible sound can
be masked by another louder sound. This is called masking, a phe-
nomenon that occurs because any loud sound distorts the absolute
threshold of hearing.

Masking was defined by the American Standards Association in
1960 as ‘‘the process by which the threshold of audibility for one
sound is raised by the presence of another (masking) sound’’
(Moore, 1989). Masking may be due to simultaneous sounds or
separated sounds over time. In this paper, only simultaneous
masking (i.e. a signal presented at the same time) is taken into
account.

Simultaneous masking was used by Fletcher (1940) in experi-
ments that laid the foundation for the concept of a critical band.
In these experiments, he measured the threshold of a sinusoidal
signal as a function of the bandwidth of a bandpass noise masker
centered at the sinusoidal frequency. Fletcher observed that when
the noise bandwidth was increased, the masking threshold also in-
creased, as expected. However, he also observed that the noise
bandwidth no longer influenced the masking threshold after a cer-
tain critical value, the critical band. Fletcher then suggested that
the peripheral auditory system behaves as if it contains a bank of
bandpass filters, with continuously overlapping center frequencies,
so-called auditory filters. Clearly, a simplifying assumption was
that the shape of the auditory filter could be approximated as a
simple rectangle, with a flat top and vertical edges. Even though
the original models proposed by Fletcher were inaccurate, and
have been revised and adjusted in a myriad of more recent studies,
the critical band and auditory filter concepts still pervade current
research.

Experimental results obtained since 1940 corroborate the idea
that a signal with bandwidth narrower than an equivalent rectan-
gular bandwidth (ERB) excites a limited length of the basilar mem-
brane (BM), and the absolute threshold of hearing inside this BM
segment consequently increases. ERB is a function of a given cen-
tral frequency, which can be approximated as (Moore and Glas-
berg, 1983):

ERBðf Þ ¼ 25þ 75ð1þ 1:4f 2Þ0:69
;

where ERB(f) is in Hz and f is the central frequency in kHz.
For instance, at 1 kHz the ERB approaches 162 Hz, whereas at

100 Hz it approaches 101 Hz. If we follow the path paved by
Fletcher, the cochlea can be viewed as a filter bank consisting of
bandpass filters whose bandwidths are roughly given by the corre-
sponding ERB. In other words, an observer experiences an inability
to resolve harmonic sounds whose frequency difference is smaller
than a critical band. According to most broadly accepted physiolog-
ical models of human ear processing, sounds are perceived through
the mapping of air vibration to BM activity. Moreover, a critical
band may form around any central frequency (i.e. the harmonic
fundamental frequency of the excitation). Therefore, by arbitrarily
choosing one frequency as a starting point, between 20 Hz and
16 kHz, 24 non-overlapping critical bands may be arranged side
by side (Zwicker and Feldtkeller, 1981). Their central frequencies
roughly follow a uniform distribution below 1 kHz, and a logarith-
mically increasing spacing above 1 kHz (Becchetti and Ricotti,
2004).

Given the dependence of ERB on the central frequency, the
usual linear scale for frequency in cycles per second or Hz is fre-
quently replaced with experimentally determined frequency
scales, so that ERB is approximately constant on these scales. Here
we use one of these scales, the Mel frequency, whose functional
relationship with the scale in Hz is shown in Eq. 1. In other words,
whenever we map frequency in cycles per second (Hz) to the new
frequency axis (the Mel scale), all critical bands approximately ex-
hibit the same bandwidth (in Mel).

fMel ¼ 2595 log 1þ fHz

700 Hz

� �
: ð1Þ

In spite of the rectangular shape first proposed by Fletcher for audi-
tory filters, a different shape became more popular. This shape was
obtained by simply inverting the psychophysical tuning curve,
which is similar to the neural tuning curve (obtained as the level
of a tone required to produce a fixed output from a single neuron)
(Moore, 1989). This inverted shape can roughly be approximated
by a triangle, as in typical MFCC implementation, but it can be more
precisely obtained through the notch noise method proposed by
Patterson, 1976, thus yielding the rounded-exponential filter shape
(roex) function model roexðp; rÞ ¼ ð1� rÞð1þ pgÞe�pg þ r, where p
describes the slope of the filter, r controls the filter dynamic range,
and g is the frequency deviation from the filter center.

3. MFCC and masking

3.1. MFCC history and typical implementation

The signal analysis currently known as MFCC was first proposed
by Bridle and Brown (1974) as the log spectrum transformed
through a 19-channel filter bank, so that corresponding energies
were in turn cosine-transformed into 19 ‘‘spectrum shape’’ coeffi-
cients. Mermelstein (1976) named this algorithm Mel-based ceps-
tral parameters and use the MFCC acronym for the first time. In his
work, he applied the algorithm to measure inter-word distances
for a time-warping task in speech recognition.

Filter banks used in MFCC mimic the auditory critical-band fil-
ter bank, with fixed bandpass centers. The output energies from
these filters can be regarded as a subsampling of the spectrum.
The logarithms of these energies are taken to mimic loudness com-
pression in mammalian ears. The output in MFCC computation is a
low-dimensional representation of compressed bandpass filter
energies, obtained through a discrete cosine transform (DCT).

The lower DCT projection coefficients used in MFCC roughly
correspond to the principal component projections of speech signal
spectra and good word recognition can be obtained using only a
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few of these principal components (Pols, 1971). More precisely,
Pols (1966) showed that the first six eigenvectors of the covariance
matrix for Dutch vowels uttered by three speakers (from 17 band-
pass filter energies) accounted for 91.8% of the total variance. For-
tunately, the principal eigenvectors he found are very similar to the
vectors used in DCT projection, which may explain why DCT
roughly provides almost decorrelated cepstral projection, captur-
ing the phonetically important characteristics of speech.

Even though MFCC has been regarded as one of the simplest
auditory models, it remains a powerful sound representation tool
since it provides a linear and orthogonal coordinate space for hu-
man perception of ‘‘sound color’’ (Terasawa, 2009). MFCC became
widely popular in the signal processing community in its almost
original form, with triangular bandpass filters simulated through
the weighting of Fourier spectra, yielding the so-called Mel spec-
trum and then the cosine-transformed MFCC. Over time, MFCC
extraction is performed once for every short-time signal frame.
Within these frames of typically 20–40 ms (although (Davis and
Mermelstein, 1980) used 12.8 ms instead), speech signals can be
conveniently approximated by stationary random processes. By
denoting a whole signal (digitized utterance) as sðnÞ; n ¼ 1;2; . . . ;

Ns, and the fth frame of sðnÞ as xðm; f Þ ¼ sðnf þm� 1Þ, where
m ¼ 1;2; . . . ;M; M � Ns and nf denotes the sample where frame
f begins, we can summarize a typical MFCC extraction in frame f
as follows

1. Pre-emphasized signal xðm; f Þ is weighted, usually with a
Hamming window, according to xwðm; f Þ ¼ wðmÞxðm; f Þ, where
wðmÞ ¼ 0:54� 0:46 cosð2pðm� 1Þ=MÞ.
2. xwðm; f Þ is padded with zeros and FFT-transformed to Xwðk; f Þ.
3. Magnitude values of Xwðk; f Þ are partially weighted and
summed, thus simulating bandpass filters (triangular filters).
4. Log values of the resulting partial sums, Kt overlapping sums
(Kt triangular filters), are arranged as a vector of energy values.
5. DCT is applied to this vector and the first 10–25 resulting
coefficients are taken, the MFCCs.

Therefore, MFCC mimics two perceptual features: the frequency
response of the BM, and the compressive nonlinearity of auditory
nerve excitations.

A current MFCC implementation by Malcolm Slaney (publicly
available at https://engineering.purdue.edu/�malcolm/interval/
1998-010/) in MATLAB code uses 40 triangular bandpass filters,
13 linearly spaced, from 133.3 to 866.7 Hz, and 27 non-linearly
spaced from 866.7 to 6398.5 Hz. Another typical implementation,
as proposed by Paulus and Hornegger (2004), uses only 25 triangu-
lar filters. Seven of them are linearly spaced, centered at frequen-
cies of 150–450 Hz, and have a constant bandwidth of 100 Hz.
For the remaining 18 triangular filters, three groups of six each
cover an octave between 500 and 4000 Hz (500–1000 Hz, 1000–
2000 Hz, and 2000–4000 Hz).

Since the work of Bridle and Brown (1974) and Mermelstein
(1976), the peripheral auditory system has often been modeled as
a bank of overlapping triangular bandpass filters (Moore and Glas-
berg (1983)). However, there have been some exceptions. For
instance, Hermansky (1990) and Zheng et al. (2001) used a piece-
wise shape to simulate a critical-band-masking curve to approxi-
mate the asymmetric masking curve, which exploits the proposal
of Zwicker and Feldtkeller (1981) that auditory filter shape is
approximately constant on the Bark scale. Indeed, although trian-
gular filters are usually preferred, Zheng et al. (2001) presented
many tests for several MFCC implementations, with three filter
shapes (triangular, rectangular and Schroeder) implemented on
two scales (Bark and Mel), with and without filter overlapping
and with the number of filters ranging from 35 to 40. All these
MFCC variants were compared in an automatic speech recognition
task with a standard Mandarin database of utterances (the 863

database). The experimental results indicated that differences be-
tween the Bark and Mel scales and among the filter shapes tested
are not significant (Zheng et al., 2001). However, the absence or
presence of filter overlapping led to a significant difference.

3.2. Spectral masking in MFCC

The main link between masking and MFCC is rather straightfor-
ward: the MFCC filter bank approximately resembles the critical-
band bank. Therefore, the roex-like shape of auditory filters, ob-
tained through experiments with the masking effect, can roughly
be approximated by triangles, as in typical MFCC implementation,
where linear filters with a triangular bandpass shape are used.

Nonetheless, in spite of the clear masking-related origins of the
filters used in MFCC, the masking effect is lost when a bank of lin-
ear bandpass filters is used to model nonlinear phenomena that oc-
cur in the peripheral auditory system. Indeed, even if the spectral
details disappears, since sound energy inside the spectral interval
covered by one bandpass filter is mapped to a single averaged sca-
lar value, it is clear that all the small spectral details still affect this
averaged energy per critical band, whereas the masking effect
would rather conceal some small spectral contributions. It is worth
highlighting that roex-shaped curves are hearing threshold con-
tours, not linear weights, as in MFCC.

Another important difference between typical MFCC and the
auditory model suggested by Fletcher (Section 2) is that the bank
of bandpass filters would have continuously overlapping center
frequencies whereby the auditory filters are not centered at pre-
fixed frequencies. Thus, triangular filters with fixed centers may
reinforce noise when these centers fall in parts of the spectrum
where the noise is greater than the signal. This may explain in part
why standard MFCC is so sensitive to noise, in addition to reasons
already discussed by Wu and Cao (2005) and Nasersharif and Ak-
bari (2007), according to which the log function used in MFCC
computation tends to reinforce background noise.

4. Spectral masking in EIH and ZCPA

The EIH method of Ghitza (1994) has better robustness to addi-
tive Gaussian noise than Fourier-based methods. In the EIH meth-
od, the frequency content of a signal is estimated from the spiking
behavior of simulated auditory nerve fibers, producing a frequency
domain representation similar to a Fourier magnitude spectrum.

In the original study, Ghitza (1994) used a filter bank of 190
overlapping cochlear channels (bandpass filters), logarithmically
spaced between 200 and 7000 Hz, followed by an array of five le-
vel-crossing detectors per filter output that simulate the auditory
nerve fibers which innervate one inner hair cell. Only intervals be-
tween successive upward-going level crossings are considered and
a histogram of the inverse interval (i.e. instantaneous frequency
estimates) is computed. Two typical bin allocations for the interval
histogram were proposed, the finest one corresponding to 128 bins
linearly distributed from 0 to 4000 Hz. In this case, each bin covers
a frequency interval of 31.25 Hz. For instance, given a bin centered
at 100 Hz, every interval between 8.65 ms (1/115.6 Hz) to
11.85 ms (1/84.4 Hz) is taken as an entry to this bin. Compared
to MFCC, the EIH method has two remarkable sources of robust-
ness against noise:

� Level-crossing detectors estimate the dominant frequency pres-
ent at the output of each bandpass filter. If a dominant fre-
quency lies within the band, noise outside the band is filtered,
increasing the signal-to-noise ratio (SNR) before level-crossing
detection.
� Five level-crossing detectors, placed at different levels, extract

redundant information from the signal within each band.

2158 J. Montalvão, M.R. Rodrigues Araujo / Pattern Recognition Letters 33 (2012) 2156–2165



Author's personal copy

In EIH, the masking effect comes from the combination of fre-
quency estimates from crossing intervals and frequency quantiza-
tion (in histogram bins). As an illustration, we consider a
‘‘masking’’ signal given by s0ðtÞ ¼ sinð2p100tÞ, which clearly is
expected to fall in the histogram bin centered at 100 Hz. In the
presence of a second signal, s1ðtÞ ¼ A sinð2pð100þ DFÞt þ /Þ, the
resulting signal sðtÞ ¼ s0ðtÞ þ s1ðtÞ, for small values of A (A < 1),
may produce the very same histogram as s0ðtÞ, if interval perturba-
tions due to s1ðtÞ are not greater than 15.625 Hz. In this case, the
presence of s1ðtÞ is not ‘‘noticed’’ in the spectral histogram repre-
sentation; in other words, it is masked by s0ðtÞ.

A more precise analysis of this masking effect can be presented
as follows, for an upward-going zero-level crossing detector. Given
A, the strongest interval perturbation occurs when extreme values
of s1ðtÞ (�A) perfectly cancel s0ðtÞ, thus maximally separating/
approximating zero-level crossing instants, as illustrated in Fig. 1.

Therefore, the maximum period of s1ðtÞ must be T0 � 2Dt,
where T0 is the period of s0ðtÞ, so that sin 2p Dt

T0

� �
¼ A.

Consequently,

Dt ¼ T0 arcsinðAÞ
2p

ð2Þ

and

T1 ¼ T0 � 2Dt; ð3Þ

where T1 is the deviated interval. From Eqs. (2) and (3), the deviated
period can be expressed in terms of T0 as

T1 ¼ T0 1� arcsinðAÞ
p

� �
: ð4Þ

It is easy to see that the strongest period perturbation is induced by
an interfering harmonic at FI ¼ 1=2T 01, with T 01 ¼ T0 1� arcsinðAÞ

p

� �
, or

odd harmonics of FI. Considering that band filtering is applied to
the signal before the level crossing detectors, we assume that only
FI and 3FI are relevant in this analysis.

Fig. 2 presents the maximum frequency deviation as a function
of FI for F0 ¼ 100 Hz . It is worth noting that maximum deviation is
obtained with FI outside the band covered by that histogram bin.
Consequently, bandpass filtering further reinforces the masking
effect by attenuating interfering components far from 100 Hz. By
contrast, for F0 ¼ 1000 Hz, as long as the bin bandwidth remains
constant, the same deviation effect of 15.625 Hz is attained at
507.81 and 1523.43 Hz (with a much lower interfering amplitude
of only A ¼ 0:048).

Indeed, the whole masking effect due to the joint effect of band-
pass filtering and level crossing detection is frequency- and ampli-
tude-dependent, and a deeper analysis is beyond the scope of this
paper.

Unfortunately, EIH is strongly sensitive to the choice of levels in
the level-crossing detector, since each level is differently affected
by noise (Kim et al., 1999). To circumvent this difficult design prob-
lem, Kim et al. (1999) proposed an alternative method, ZCPA, in
which the peak amplitude between adjacent zero-crossings is used
as a nonlinear weighting factor for the corresponding histogram
bin (frequency bin) for each bandpass filter. The use of a single
zero-crossing detector per bandpass filter output provides a much
lower computational burden, whereas its performance in recogni-
tion tasks is similar to that of EIH, and therefore is better than
MFCC in the presence of noise (Kim et al., 1999).

If zero-crossings and histograms are used, the masking effect
illustrated here for EIH can be extended to ZCPA. Kim et al.
(1999) showed that a spectrum based on zero-crossing has a ten-
dency to enhance a dominant signal component. Moreover, as
illustrated here, a dominant signal component within a given fre-
quency band may mask weaker components, even from outside
this band, if zero-crossing-based frequency estimates lie within a
limited histogram bin bandwidth.

We believe that this implicit masking effect for both strategies
accounts for most of their performance gains in terms of robust-
ness compared to MFCC. Nevertheless, we do not propose an alter-
native for either EIH or ZCPA. Instead, we focus on the missing
aspect of traditional MFCC algorithms, the masking effect, and pro-
pose a straightforward way to include masking in an MFCC-like
algorithm. Therefore, we do not compare the performance of our
approach to that of EIH or ZCPA. Instead, we limit ourselves to
experimental comparisons between MFCC with and without
masking.

5. Proposed MFCC-like algorithm

As mentioned in Section 3, there is no consensus on practical
MFCC implementation because there are many possible choices
for filter shape and number. Even filter bandwidth and distribution
along the frequency scale (with or without overlapping) are a mat-
ter of arbitrary choice.

Investigative studies such as that of Zheng et al. (2001) provide
hints on possible choices. For instance, Zheng et al. (2001) showed
that in an automatic speech recognition context, differences

Fig. 1. Increase in the maximum zero-crossing interval due to a single harmonic
interference.

Fig. 2. Maximum DF for A ¼ 0:41 and F0 ¼ 100 Hz (average values calculated
numerically).
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between the Bark and Mel scales and different filter shapes are not
relevant. By contrast, whether or not the filters overlap makes a big
difference. The authors obtained the best classification results with
35–40 filters with approximately 158 Mel per filter.

In this section we use these results and further choose a slightly
new approach to the usual MFCC. This new approach has the merit
of allowing inclusion of a masking effect through a very simple
algorithmic modification.

5.1. Alternative MFCC implementation

In our alternative MFCC implementation we replace the usual
FFT-based analysis with a non-inversible DFT-like signal projec-
tion. This main change allows for masking implementation in a
very simple way. Furthermore, other minor aspects of our MFCC
implementation are as follows:

� short-time analysis: 25 ms per frame;
� overlapping between frames: 82% (advance of 4.5 ms per

frame);
� blackman window instead of (typical) Hamming window;
� frequency scale: Mel;
� filter shape: triangular or rectangular;
� filter bandwidth: constant on the Mel scale; and
� frequency analysis: modified DFT, on the Mel scale, instead of

FFT.
Given all overlapping short frames xðm; f Þ ¼ sðnf þm� 1Þ (Sec-

tion 3) from a signal sðnÞ; n ¼ 1;2; . . . ;Ns, to discard silent frames
(or frames with acoustic energy that is too low), we first estimate
the variance of each Blackman window for xðm; f Þ as:

vðf Þ ¼ ð1=ðM � 1ÞÞ
XM

m¼1

ðxðm; f ÞwBðmÞ � �sðf ÞÞ2;

where wBðmÞ ¼ 0:42� 0:5 cosð2pðm� 1Þ=MÞ þ 0:08 cosð4pðm� 1Þ=MÞ
and

�sðf Þ ¼ ð1=MÞ
XM

m¼1

ðxðm; f ÞwBðmÞÞ:

Then we set an adaptive energy threshold:

L ¼meanðvðf ÞÞ þminðvðf ÞÞ
2

;

where meanðvðf ÞÞ and minðvðf ÞÞ denote the mean and minimum
values of vðf Þ, respectively, over all frames.

This threshold procedure is illustrated in Fig. 3 for a signal cor-
responding to the utterance (in Portuguese) ‘‘chocolate, zebra, ba-
nana, táxi’’ (approx. 3 s).

All remaining short-signal frames xðm; f Þ are then subjected to
frequency analysis. Typical MFCC implementations use FFT for
computational efficiency reasons. Since we are including a masking
effect on the nonlinear Mel scale, a more suitable approach is the
use of a DFT-like transform matrix T whose rows are complex
exponential vectors at non-linearly spaced frequencies. In other
words, T is an M � K matrix, whose entries are

Tðm; kÞ ¼ expð�jðm� 1Þ2pfHzðkÞ=FsÞ;

where Fs stands for the sampling frequency in samples per second,
m ¼ 1;2; . . . ;M; k ¼ 1;2; . . . ;K; j ¼

ffiffiffiffiffiffiffi
�1
p

and

fHzðkÞ ¼ 700ð10fMelðkÞ=2595 � 1ÞHz

and

fMelðkÞ ¼ 150þ ð2840� 150Þðk� 1Þ
ðK � 1Þ Mel:

This DFT-like transform matrix is not square (and is therefore not
inversible) if K < M. Moreover, rows are associated with frequen-
cies (in Hz) that are mapped back from an equally spaced grid of fre-
quencies on the Mel scale, and therefore yield a non-linear grid of
frequencies in Hz. We arbitrarily choose K ¼ 145, and the resulting
correspondence between the perceptual Mel scale and the fre-
quency in cycles per second (Hz) is illustrated in Fig. 4.

Unlike FFT, this choice is not based on computational efficiency;
nevertheless, for short windows with 553 samples (25 ms at
Fs = 22050 samples/s), the proposed analysis yields 80,185 com-
plex multiplications. By contrast, to obtain the same minimum
spectral interval between bins of 13.4 Hz with FFT, it would be
necessary to increase the signal frames at low frequencies. Conse-
quently, a computational burden of 17575 complex multiplications
would be considered instead. In other words, our DFT-like analysis
requires fewer than five times as many complex multiplications as
the equivalent FFT, which is not prohibitive.

Matrix T is computed once and every overlapping frame for the
samples is time-to-frequency mapped according to

X ¼ TtxB;

where xBðm; f Þ ¼ xðm; f ÞwBðmÞ and t denotes matrix transposition.
Since Xðk; f Þ (k ¼ 1;2; . . . ;K) denotes the spectrum of xBðm; f Þ

(m ¼ 1;2; . . . ;M) and k denotes linearly spaced frequencies on
the Mel scale (thus non-linear on the Hz scale), linear filters can
be implemented through constant-bandwidth windows, as
illustrated in Fig. 5.

Fig. 3. First signal segmentation using the power profile: frames with a signal
energy below the automatically set threshold L are discarded.

Fig. 4. Frequency analysis on the Mel scale and its corresponding scale in Hz. If we
assume that the Mel scale is linear, from a perceptual perspective the equivalent
scale in Hz is non-linear.
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We experimented with two filter response shapes, triangular
and rectangular, associated with the following spectral weighting
functions:

htðk; kcÞ ¼
1� 2jk�kc j

BW ; 2jk� kcj < BW;

0; 2jk� kcjP BW;

(
ð5Þ

hrðk; kcÞ ¼
1; 2jk� kcj < BW ;

0; 2jk� kcjP BW;

�
ð6Þ

where kc denotes a discrete central frequency and BW is the con-
stant filter bandwidth (number of discrete values). We arbitrarily
set kc ¼ 1;5;9; . . . ;145, which leads to 37 filters. Note that if
BW=2 > 2, then the filter bands overlap. We experimented with val-
ues of BW from 10 to 26, with strong overlapping between filters. It
is worth noting that BW ¼ 10 (�168 Mel) roughly corresponds to
the filter bandwidth in the usual MFCC implementation. Moreover,
according to Eqs. (5) and (6), the first filter was centered at 100 Hz,
whereas the last filter was centered at 8000 Hz. In both cases, they
were placed far from the spectral boundaries, 0 Hz and the Nyquist
frequency.

To simulate the filter bank effect, magnitude values of Xðk; f Þ are
weighted and summed to provide filter outputs. These outputs are
log-transformed and arranged in a log-energy vector E. For triangu-
lar filters, this corresponds to the following operations:

Eðkc; f Þ ¼ log
XK

k¼1

Xðk; f Þhtðk; kcÞ
 !

: ð7Þ

For rectangular filters, we just replace ht with hr in this equation.
Finally, MFCC coefficients are obtained through conventional

DCT of the (column) vector corresponding to the values of E for a
given frame f.

The whole algorithm for MFCC extraction of a short-time signal
frame is illustrated in Fig. 6.

As stated before, this alternative algorithm allows for straight-
forward implementation of masking. Nevertheless, in spite of all
the changes, the alternative algorithm is still equivalent to typical
MFCC extractors in terms of the resulting coefficients. To illustrate
this equivalence, Fig. 7 shows the same short signal frame pro-
cessed with a publicly available algorithm and the proposed algo-
rithm, both adjusted to produce 12 MFCCs. The small differences
observed are mainly due to positioning of the triangular filter cen-
ter. Filter shapes in the Slaney implementation are weighted by the
inverse of the corresponding triangle area, but this is not necessary
in our approach, because the non-uniform density of spectral bins
(provided by the modified DFT) produces an equivalent effect with
non-weighted triangular filters.

5.2. Modified MFCC: inclusion of the masking effect

To include the masking effect in our algorithm, we first replace
kc ¼ 1;5;9; . . . ;145 with kc ¼ 1;2;3; . . . ;145. Therefore, we now
have one vector htðk; kcÞ centered at every discrete frequency value.

This is motivated by the observation that a critical band may be
formed around any central frequency (Fletcher, 1940; Zwicker
and Feldtkeller, 1981). Moreover, we do not sum the weighted
energies around kc with htðk; kcÞ, as in MFCC. Instead, we find the
maximum weighted energy value for each weighting vector
htðk; kcÞ. Then we gather the indices for all the selected peaks
(one per frequency center, kc) in a vector pðkcÞ (note that the max-
imum value is not taken into account, since only its position or fre-
quency is relevant):

pðkcÞ ¼ arg max
k
ðXðk; f Þhtðk; kcÞÞ:

Vector p is a sequence of pointers to the discrete frequencies at
which peaks occur, and some frequency values may be identified
many times. In other words, the greater a spectral peak, the more
likely it is that its position will be identified by p. The next step is
to map p to a histogram h in which each bin hðkÞ counts how many
times frequency k was identified as a spectral peak in p.

Histogram h is closely related to the ensemble histogram in EIH
(Ghitza, 1994) and plays the role of spectral representation. The
simple modifications made to the MFCC extractor can be regarded
as a sliding window (instead of fixed windows) from which energy
peaks are taken, and all remaining spectral energy is discarded
(masked) for each position of the sliding window, as illustrated
in Fig. 8.

Finally, because our main goal is to test the effect of masking in
an MFCC-like algorithm with as few changes as possible, we apply
DCT to histogram h in the same way as log-filter bank energies are
processed in MFCC.

6. Masking and robustness in AWGN

In this section, we empirically test how masking improves
MFCC robustness against AWGN. In our tests, we arbitrarily
selected a single zero-mean short signal frame (25 ms) correspond-
ing to a male speaker uttering the vowel/a/ in a clean environmentFig. 5. Filter bank on the Mel and Hz scales.

Fig. 6. MFCC extraction according to the usual approach through estimation of an
energy vector in overlapping triangular windows (equally spaced on the Mel scale),
followed by DCT of the log-transformed energy vector. Typically, the first coefficient
(out of the 20 lowest DCT coefficients in this case) is systematically discarded.
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(a noiseless laboratory). This short frame of clean signal sf ðmÞ
(m ¼ 1;2; . . . ;M) was projected onto two feature spaces corre-
sponding to: (a) 19 MFCCs, according to Section 5.1 and (b) 19
modified MFCCs including the masking effect, according to Section
5.2. Then a noisy version of the same short signal frame was ob-
tained, snf ðmÞ ¼ sf ðmÞ þ nðmÞ, where nðmÞ denotes independently
synthesized zero-mean white Gaussian noise. Moreover, the noise
variance was adjusted to provide suitable SNR according to

SNRðdBÞ ¼ 10log10

PM
m¼1s2

f ðmÞPM
m¼1n2ðmÞ

:

Finally, the mean squared relative deviation (i.e. noisy coefficient
minus clean coefficient divided by clean coefficient) between each
pair of coefficient vectors was computed in 100 independent runs
per method per noise level. The resulting average deviations are
presented in Table 1 for triangular filters with a constant bandwidth
of 168 Mel.

Since the signal samples, pre-processing, noise level, filter band-
width and filter shapes are the same for both methods, differences
in performance are expected to come from the masking effect
implemented in the modified MFCC. At a low noise level (30 dB),
MFCCs with and without masking are roughly equivalent in terms
of sensitivity to white noise, whereas MFCC with masking is clearly
less sensitive to noise for SNR 6 20 dB.

Experimental results presented in Section 7 suggest that the
robustness of the modified MFCC method can be improved through
changes in the filter shape and bandwidth. Indeed, because most

results in the last part of Section 7 come from a specific choice of
these parameters (flat filters instead of triangular with a wider
bandwidth of 370 Mel), we also tested its relative deviation for dif-
ferent SNR values, which yielded the results presented in Table 2.

These better results are in agreement with the error rates pre-
sented in Section 7.

7. Experimental comparisons

7.1. Experiments using the BioChaves database

We performed biometric verification experiments using a pub-
licly available database (The BioChaves database, available at
www.biochaves.com/en/download.htm). Speech samples in this
database correspond to signals recorded during the uttering of a
single set of four words in Portuguese, chocolate, zebra, banana
and táxi, that have identical English spellings, apart from táxi.
The duration of each utterance was approximately 3 s and each
subject uttered this set of words 10 times, five times during a first
session and five times during a second session, approximately
1 month later, using a conventional headset (electret microphone
and headset). Speech signals were digitized and recorded at 16 bits
per sample, at 22050 samples per second. All recording was done
under low background noise, although the noise environment
was not controlled. Ten subjects took part in the experiment.

The database is small for biometric verification. However, our
goal was to compare different versions of MFCC-based algorithms.
We obtained a total of 1375 distinct pairwise comparisons

Fig. 7. Twelve MFCCs obtained using a typical implementation (Malcolm Slaney’s Auditory Toolbox) compared to 12 MFCCs obtained with the alternative implementation.
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between utterances from different sessions (1125 from different
speakers and 250 from the same speaker), which was sufficient
to show a clear and consistent difference between MFCC with
and without masking.

It is worth noting that pairwise comparisons simulate a verifica-
tion protocol with one utterance per enrollment and one per inter-
rogation. Thus, given the short duration of each utterance for
biometric purposes (only 3 s), we should expect high error rates
compared to typical biometric experiments. However, this is not
relevant to the comparison of algorithm performance.

Moreover, we did not take advantage of the fact that subjects
utter the very same sentence to improve biometric results (e.g.
through HMM or DTW). Instead, we just gathered extracted
short-time features from each utterance as a set of randomly gen-
erated vectors (one set per utterance) and compared these sets
using a K-nearest neighbors (K-NN) classifier. We arbitrarily chose
K ¼ 5 and slightly modified the classifier to obtain scores between
0 and 1 instead of average distances between feature vectors.

Therefore, in each experiment, every single utterance from one
session (half of the database) was taken once as a prototype

(enrollment) and then cross-compared to every other utterance
from another session. When both compared utterances came from
the same person, the resulting score was labeled as ‘T’ (true
claimed identity), otherwise, it was labeled as ‘F’. Thus, each MFCC
algorithm yielded 250 scores labeled ‘T’ and 1125 labeled ‘F’. Then
the threshold was adjusted to minimize the equal error rate (EER)1

for each set of scores and each MFCC algorithm.
The algorithms compared here are referred to as

(a) MFCC: 19 MFCCs per time frame;
(b) FastMasking-T: 19 MFCCs with masking using a triangular

window; and
(c) FastMasking-R: 19 MFCCs with masking using a rectangular

window, where the prefix ‘Fast’ conveys the idea that a slid-
ing window for a short-frame signal spectrum has a lower
computational burden than other masking implementations,
typically based on actual filter banks in the time domain and
with many parallel convolutions, such as in the EIH (Ghitza,
1994) and ZCPA (Kim et al., 1999) methods.

Fig. 9 presents EER values for clean sound (no additive white
noise) and various discrete bandwidths. For BW = 10 (�168 Mel),
the conventional MFCC yields its best performance with EER
� 7:5%. It is interesting that 168 Mel is close to typical values
found in practical MFCC applications. Nonetheless, the best perfor-
mance was obtained with FastMask-T, with EER �1:7% for
BW = 20 (�337 Mel), closely followed by FastMask-R. It is evident
that neither masking method is very sensitive to BW for values
greater than 18 (304 Mel).

To test performance degradation under AWGN, independent
noise was artificially added to clean utterances used for the test
(the enrollment signal was kept clean). As shown in Fig. 10, for
SNR = 10 dB, FastMask-T no longer outperformed FastMask-R,
whereas MFCC remained the worst method, as expected.

Experimentation with other AWGN levels revealed that the
FastMask-R method is more robust than FastMask-T, providing
better results with a discrete BW ranging from 23 (387.82 Mel)
to 25 (421.55 Mel). Fig. 11 gives a comparative overview of the per-
formance for BW range three noise scenarios.

7.2. Experiments with the Ynoguti database

To provide statistically meaningful conclusions, a second set of
experiments was performed using a larger corpus. This publicly

Fig. 8. Masking effect using a sliding filter on the Mel scale and a competition (max)
operation.

Table 1
Relative deviation for different SNR values for triangular filters with a bandwidth of
168 Mel.

30 dB 20 dB 10 dB 0 dB �10 dB

MFCC 0.8 2.0 2.8 3.6 4.2
Modified MFCC 1.3 1.5 2.1 2.4 2.4

Table 2
Relative deviation for different SNR values for flat filters with a bandwidth of 370 Mel.

30 dB 20 dB 10 dB 0 dB �10 dB

Modified MFCC 0.1 0.4 1.2 1.5 1.7

Fig. 9. Comparison of MFCC, FastMask-T and FastMask-R for a clean signal.

1 The point at which the false alarm rate (FAR) equals the false rejection rate (FRR).
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available database, described by Ynoguti and Violaro (2008), in-
cludes voice samples from 40 speakers, each of whom utters be-
tween four and eight different sentences in Brazilian Portuguese.

Moreover, besides white synthetic noise, real-world noise sam-
ples were included in these experiments. We used three long
sound files from NOISEX-92 (Varga and Steeneken, 1993): babble
noise, car (Volvo) noise and factory noise, each of which was
235 s long.

Unlike the experiments in which we used a simple K-NN classi-
fier to highlight the effects of masking, with very short training and
testing signals (only �3 s each), we experimented with longer
training (�60 s) and test (�6 s) signals and a Gaussian mixture
model (GMM)-based recognizer, adapted through likelihood max-
imization (via the Expectation–Maximization algorithm), closely
following the approach of Reynolds and Rose (1995).

For each targeted user and for each SNR, we randomly selected
20 clean utterances (20 files), corresponding to approximately 60 s
of signal to train a 50-component GMM with nodal variance (Rey-
nolds and Rose, 1995). Then two other files (� 6 s of signal) from a
given user of the same gender were randomly selected and added
to a weighted random 6-s segment of noise signal. More precisely,
every noise signal was a randomly selected segment of the long
noise files. The noise weight was adjusted to provide a specified
SNR. Finally, the likelihood of the noisy test signal was computed
using the trained GMM to produce a single score. This resulting
single score was labeled as ‘T’ or ‘F’, according to whether the
speaker in the test files was the same as in the training files or not.

This procedure was independently repeated 1175 times per tar-
get speaker for each SNR, which led to 400 ‘T’ and 775 ‘F’ scores.
Moreover, in tests with a clean signal (no noise), in which the error
rates were lower, we increased the number of tests to 3060 (1000

‘T’ scores and 2060 ‘F’ scores). This protocol was used for MFCC
without masking and the usual triangular filters and FastMask-R
with a filter BW of 370 Mel (our choice to provide a suitable
trade-off between performance with a clean signal and robustness
against noise). As in the first set of experiments, we adjusted the
threshold to find EER for each set of 1175 or 3060 scores. These
EER are shown in Tables 3 and 4 for male and female speakers,
respectively.

No noise compensation or reduction methods were used in any
of the experiments, so any resistance to noise must come from
masking. Strong sensitivity of the usual MFCC to additive noise is
evident. For instance, apart from White and Volvo noise, even
SNR of 10 dB is enough to increase EER above 40%. By contrast,
for the very low-frequency Volvo noise, FastMask-R resisted a very
strong noise level corresponding SNR of �10 dB.

8. Discussion and conclusions

We hypothesized that much of the effort in channel compensa-
tion and sophisticated pattern recognizer design can be saved by a
very simple change in MFCC computation that involves inclusion of
spectral masking in the algorithm. To test this hypothesis, we used
a slight MFCC modification to allow for inclusion of masking in
which averaging is replaced by maximization in the resulting
algorithm.

In spite of its well-known drawbacks, MFCC is a popular and
widely used feature for sound representation. This is the main rea-
son why we did not propose a new feature. Instead, we demon-
strated that the main MFCC drawback can be easily overcome
with a slight algorithm modification involving inclusion of a mask-
ing effect. MFCC with and without masking were used for speaker
verification. A performance gain was obtained when masking was
used, mainly under strong noise conditions.

Since the only difference between the algorithms we compared
is the masking effect (all algorithms were implemented with ex-
actly the same parameters and the same DFT-like analysis), we
conclude that this performance gain is due to the masking effect.

We also observed that rectangular (piece-wise) masking win-
dows give better results under strong AWGN. Moreover, the best
bandwidth was approximately twice the critical band.

Fig. 10. Comparison of MFCC, FastMask-T and FastMask-R for SNR of 10 dB.

Fig. 11. Comparison of FastMask-R performance under three noise scenarios: clean,
10 dB and 0 dB.

Table 3
EER (%) for male speakers.

Clean 10 dB 0 dB �10 dB Noise source

MFCC 24.1 48.8 �50 White
1.7 46.7 47.8 �50 Babble

24.5 34.6 43.5 Volvo
49.5 49.7 49.7 Factory

FastMask-R 22.5 35.5 43.5 White
0.6 4.5 19.9 44.4 Babble

1.0 2.2 17.8 Volvo
9.2 20.3 41.4 Factory

Table 4
EER (%) for female speakers.

Clean 10 dB 0 dB �10 dB Noise source

MFCC 23.6 49.6 �50 White
3.1 42.7 46.8 �50 Babble

25.2 37.1 43.7 Volvo
49.2 �50 �50 Factory

FastMask-R 24.0 31.4 43.3 White
1.9 8.7 19.0 43.1 Babble

2.5 5.9 26.0 Volvo
10.9 26.2 42.7 Factory
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All experiments were carried out using a public database. To al-
low further comparisons between the results reported here and the
performance of other approaches for the same database, samples
used in this work are freely available to download at http://
www.biochaves.com/en/download.htm.

In conclusion, we confirmed that masking is a pivotal issue in
robustness. A natural follow-up to this work will be the realization
of more tests with different types of non-white noise. We only
studied the effect of spectral masking in short signal frames, so
we would expect even more interesting results when considering
masking over time.

Acknowledgments

This work was supported by grants from Fundação de Amparo à
Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq) to J.M. The
work represents a collaboration between two Brazilian organiza-
tions, the Federal University of Sergipe and Griaule Biometrics, in
an effort to produce a robust speaker verification system.

References

Becchetti, C., Ricotti, L.P., 2004. Speech Recognition. John Wiley & Sons, London.
Bridle, J.S., Brown, M.D., 1974. An Experimental Automatic Word-Recognition

System. JSRU Report No. 1003, Joint Speech Research Unit, Ruislip.
Davis, S.B., Mermelstein, P., 1980. Comparison of Parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE Trans.
Acoust. Speech Signal Process. 28, 357–366.

Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P., 2011. Front-end factor
analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19,
788–798.

Fletcher, H., 1940. Auditory patterns. Rev. Mod. Phys. 12, 47–65.
Ghitza, O., 1994. Auditory models and human performance in tasks related to

speech coding and speech recognition. IEEE Trans. Speech Audio Process. 2,
115–131.

Hautamaki, V., Kinnunen, T., Franti, P., 2008. Text-independent speaker recognition
using graph matching. Pattern Recognition Lett. 29, 1427–1432.

Heck, L.P., Reynolds, D.A., 2001. Speaker verification: From research to reality. In:
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, Salt Lake City, Utah, 2001.

Hermansky, H., 1990. Perceptual linear predictive (PLP) analysis of speech. J. Acoust.
Soc. Am. 87, 1738–1752.

Jain, A.K., Flynn, P., Ross, A.A., 2007. Handbook of Biometrics. Springer-Verlag, New
York.

Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P., 2007. Speaker and session
variability in GMM-based speaker verification. IEEE Trans. Audio Speech Lang.
Process. 15, 1448–1460.

Kim, D.-S., Lee, S.-Y., Kil, R.M., 1999. Auditory processing of speech signals for robust
speech recognition for real-world noisy environments. IEEE Trans. Speech Audio
Process. 7, 55–69.

Mermelstein, P., 1976. Distance measures for speech recognition, psychological and
instrumental. In: Chen, C.H. (Ed.), Pattern Recognition and Artificial Intelligence.
Academic Press, New York, pp. 374–388.

Moore, B.C.J., 1989. An Introduction to the Psychology of Hearing, third ed.
Academic Press, New York.

Moore, B.C.J., Glasberg, B.R., 1983. Suggested formulae for calculating auditory-filter
bandwidths and excitation patterns. J. Acoust. Soc. Am. 74, 750–753.

Nasersharif, B., Akbari, A., 2007. SNR-dependent compression of enhanced Mel sub-
band energies for compensation of noise effects on MFCC features. Pattern
Recognition Lett. 28, 1320–1326.

Patterson, R.D., 1976. Auditory filter shapes derived with noise stimuli. J. Acoust.
Soc. Am. 59, 640–654.

Paulus, D.W.R., Hornegger, J., 2004. Applied pattern recognition. Algorithms and
Implementation in C++,, Vieweg, Berlin.

Pols, L.C.W., 1966. Spectral Analysis and Identification of Dutch Vowels in
Monosyllabic Words. Doctoral dissertation, Free University, Amsterdam.

Pols, L.C.W., 1971. Real-time recognition of spoken words. IEEE Trans. Comput. 20,
972–978.

Rabiner, L., Juang, B.H., 1993. Fundamentals of Speech Recognition. Prentice-Hall,
Englewood Cliffs, NJ.

Ramos-Castro, D., Fierrez-Aguilar, J., Gonzalez-Rodriguez, J., Ortega-Garcia, J., 2007.
Speaker verification using speaker- and test-dependent fast score
normalization. Pattern Recognition Lett. 28, 90–98.

Reynolds, D.A., Rose, R.C., 1995. Robust text-independent speaker identification
using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3,
72–83.

Reynolds, D.A., Quatieri, T.F., Dunn, R.B., 2000. Speaker verification using adapted
Gaussian mixture models. Dig. Signal Process. 10, 19–41.

Terasawa, H., 2009. A Hybrid Model for Timbre Perception: Quantitative
Representations of Sound Color and Density. Ph.D. thesis, Stanford University,
Stanford, CA.

Varga, A., Steeneken, H.J.M., 1993. Assessment for automatic speech recognition: II.
NOISEX-92: A database and an experiment to study the effect of additive noise
on speech recognition systems. Speech Commun. 12, 247–251.

Wu, Z., Cao, Z., 2005. Improved MFCC-based feature for robust speaker
identification. Tsinghua Sci. Technol. 10, 158–161.

Ynoguti, C.A., Violaro, F., 2008. A Brazilian Portuguese speech database. In:
Proceedings of the XXVIth Brazilian Symposium on Telecommunication
(SBrT’08), Rio de Janeiro, Brazil, 2008.

Zheng, F., Zhang, G.L., Song, Z.J., 2001. Comparison of different implementations of
MFCC. J. Comput. Sci. Technol. 16, 582–589.

Zwicker, E., Feldtkeller, R., 1981. Psychoacoustique –L’Oreille, Récepteur
d’Information. Masson, Paris.

J. Montalvão, M.R. Rodrigues Araujo / Pattern Recognition Letters 33 (2012) 2156–2165 2165


