Clustering with Multilayer Perceptrons and Self-Organized (Hebbian)

Learning

Jugurta R. Montalvao Filho, Eduardo O. Freire, and Murilo A. Bezerra Jr.*

Abstract

A new local (Hebbian) learning algorithm for artifi-
cial neurons is presented. It is shown that, in spite
of its implementation simplicity, this new algorithm,
applied to neurons with sigmoidal activation function,
performs data clustering by finding valleys of the prob-
ability density function (PDF) of the multivariate ran-
dom variables that model incoming data. Some inter-
esting features of this new algorithm are illustrated by
some experiments based on both artificial data and real
world data.

Keywords — Hierarchical clustering, Hebbian learn-
ing, Deterministic Annealing, PDF valleys.

1 Introduction

Clustering is a self organized process that plays an im-
portant role in a wide range of fields, ranging from
typical applications, as Pattern Recognition and Sig-
nal Compression [3], and Knowledge Discovery in
Databases (KDD) [7], to less common ones such as
communication channel estimation and/or equalization
8, 2].

In cluster analysis concerned literature, we easily
identify two main issues: (a) clustering data into a pre-
viously given number of clusters — most popular algo-
rithms for clustering are based on both empirical geo-
metric criterion (e.g., K-mean and vector quantization
(VQ)) and probabilistic models, (e.g., Expectation-
Maximization (EM))—, and (b) estimating the number
of clusters — though there are no completely satisfac-
tory methods for this task [6], among the most per-
forming algorithms, we can find the Duda and Hart's
test statistic J,(2)/J.(1) [3], and the Cubic Clustering
Criterion (CCC) [10].

Most popular strategies in both issues are based
on clustering multidimensional samples (data) around
prototypes, cluster centers, where the association of a
sample to its cluster is based on predefined (e.g. Eu-
clidean) distance measure from the cluster center. Ac-
cordingly, for estimation of the number of clusters, one
rule of thumb is to increase it and to choose a configu-
ration for which the averaged within cluster dispersion
decreases more abruptly.

Roughly speaking, classical clustering approaches

*The authors are with the Universidade Federal de
Sergipe (UFS), Sdo Cristévao, CEP. 49100-000. E-
mail:jmontalvao@ufs.br, efreire@ufs.br.

present some well-known drawbacks, such as sensibil-
ity to prototypes initialization and inadequacy when
cluster shapes are far from ellipsoidal one, while find-
ing the number of clusters remains a challenging open
problem.

It is worth noting that, on the other hand, Multi-
Layer Perceptron (MLP) with sigmoidal activation
functions became popular thanks to its capabilities
to circumvent similar problems in classification con-
text. That is to say that MLP can be quite robust
to parameters initialization as well as, in classifica-
tion tasks, they are suitable to deal with highly non-
ellipsoidal class dispersions. However, in spite of its
helpful characteristics, MLPs with sigmoidal activation
functions are most of the time applied to classifica-
tion and multi-dimensional regression tasks, and not
to clustering tasks.

In this paper, we present a new clustering algo-
rithm, based on MLP with sigmoidal activation func-
tion, where self-organized neurons are adapted by a
local (Hebbian) rule, derived from a probabilistic ap-
proach. Thus, each neuron uses the Kullback-Leibler
divergence, together with a stochastic gradient opti-
mization strategy, to fit low density intervals in the
Probability Density Function (pdf) that models the
Random Variable (RV) source from which data is
drawn. Hereafter, it will be referred to as pdf valleys.

Note that, unlike most clustering approaches, the
proposed algorithm does not use prototypes around
which data is gathered — points of maximum data den-
sity —, but it rather looks for regions of low data den-
sity, which are, by hypothesis, between-clusters bound-
ary candidates. As a consequence, the new algorithm,
hereafter referred to as the MLP-CLUST, provides
some interesting properties, including the possibility of
estimating the number of clusters and also providing a
hierarchical interpretation of the estimated clusters.

In order to present this new algorithm, this paper
is organized as follows: Section 2 presents the neural
network structure of the proposed algorithm and the
cost function applied to the adaptation of each neu-
ron. In Section 3, a learning strategy is proposed. In
Section 4, it is explained how to initialize all parame-
ters, while in Section 5, the clustering algorithm itself
is briefly presented. Section 6 presents a useful feature
of the algorithm: its automatic cluster labeling capa-
bility. Finally, In Section 7, computational results are
presented. Conclusions and final discussions are pro-
vided in Section 8.

2 The MLP-CLUST Cost Func-
tion

The proposed algorithm is based on a classical Neural
Network (NN) model: the MLP [4]. Nevertheless, to
better explain how it works, we first present the clus-
tering capabilities of a Single Layer Perceptron (SLP).
Indeed, Section 7 presents an illustration of how such
capabilities can be extended to an MLP.

A SLP performs a nonlinear mapping of ®" on the
hypercube | — 1, +1[e, given by:

y = tanh(g(Wx + b))

where x = [7; 72 ... zn,]! is an N;-dimensional real
valued column vector, representing an input sample,
y=1[y1 y2 ... yn,]t is an N,-dimensional column vec-
tor, g represents the neuron soma gain, always positive,
tanh(-) stands for hyperbolic tangent function, W is
the synaptic weight matrix, and b is the neuron bias
(or threshold) vector, both real-valued.

In order to present the cost function, since it pro-
vides a Hebbian learning rule (i.e. alocal rule), we may
focus on a single neuron, whose output is:

yi(x) = tanh(g(w;x + b;))

where w; = [w;1 w;2 ... w;n], is the i-th row of
W, corresponding to the synaptic weights of the i-th
neuron into the layer; and b; corresponds to its bias.

Agsuming that Y; is a random variable, according to
some theoretical reasons presented in the following, we
might take, as a suitable cost function, the following
expectation:

Ji = —Ey,{log(y; + 1)} (1)

where the addition to one avoids singularity.
Moreover, defining h(x) = (y?(x) + 1) and rewriting
the cost function as follows:

400
Ji = —/ fx(x)log(h(x))dx (2)
where fx(x) is the multivariate pdf of the random
variable X, we obtain an expression closely related to
the Kullback-Leiber (K-L) divergence [4], a well-known
tool to compare probability density functions'.

Note that, although [*>° h(x)dx # 1, the function
h(-) is strictly positive for all x € RV, which allows
the comparison between this function and the pdf of
X, as follows:

+o00

D gl = —H(X) - / fx (%) log(h(x))dx (3)

— 00

Since H(X) corresponds to the entropy of X (i.e. the
NN input), in order to reduce the K-L distance be-
tween fx(x) and h(x), we can only adapt the function

IThe K-L divergence has some useful properties. Some of
them, particularly interesting here are its invariance with re-
spect to: (a) data amplitude scaling and (b) monotonic non-
linear transformation, like the sigmoidal activation functions of
popular artificial neuron.

h(-), which corresponds to minimize the cost function
in Equation 1. Moreover, since 1 < h(x) < 2, it is easy
to show that the integral J; converges to a real number
greater or equal to 0 and lower than log(2).

An alternative informal explanation to the goal of
the chosen cost function can be provided as follows:
let neurons parameters be represented by “V” shaped
functions — or high-dimensional “hull boat” shaped
function —, then each neuron must change its position
and concavity width in order to fit the pdf “valleys” or
“gaps” — so minimizing Eq. 3. This is specially suit-
able for finding straight valleys of multivariate density
functions.

Hereafter, the expression “neuron valley” is going to
stand for the “V” shaped or “hull boat” shaped func-
tion of each neuron, as well as the expression “neuron
valley bottom”, a point, line or hyperplane that corre-
sponds to the locus of the deepest points of a neuron
valley. Figure 1 provides an illustration to the concepts
conveyed here, for N = 2.

h(x)=y+1
h)
N
=
wx+b =0

Figure 1: Tllustration of the function h(z) of a single
neuron.

Note that any algorithm for neuron parameters
adaptation based on the minimization of .J; provides
a kind of parametric entropy optimization, according
to N. Schraudolph [11]. Indeed, in [11] and references
therein, we can find a useful discussion about the so-
called binary information gain optimization.

3 The Local (Hebbian) Learning

Some strategies for optimizing neurons parameters
were tested. However, in this paper, only the simplest
online algorithm is presented, where all neuron param-
eters are adapted, by stochastic gradient descent, for
every new incoming data. Accordingly, for each new
incoming vector input, the i-th neuron must adapt its
j-th weight — corresponding to the synaptic efficiency
associated to the scalar input z; — and bias according
to Equations 4 and 5.

{ k+1—w +aA:cJ

b = b 1 aA; (5)

. 2
where A; = % and a corresponds to the learn-

ing rate.

4 Parameters Setup

By assuming that no a priori knowledge about the pdf
which models the data source is available, in order to
reduce the chances of missing a pdf valley, we propose
the following weight matrix and bias vector initializa-
tion:

(a) W is initialized with random numbers uniformly
distributed between —1 and +1;

(b) Each i-th row w; of W is then normalized, i.e.
Iwill = 1;

(c) b; is initialized with random numbers uniformly
distributed between 0 and +1.

Note that steps (a),(b) and (c), together, are neces-
sary to fit the requirement presented in the Appendix.

5 The MLP-CLUST Algorithm

An important feature of this algorithm is its depen-
dence on parameter g. The greater g is, the bigger the
number of pdf valleys seen by the neurons. Equiva-
lently, for high values of g, the cost function (Eq. 1)
often presents a high number of local minima.

Indeed, for ¢ — +oc the neurons are able to find
any valley between any two non-overlapped samples.
Otherwise, for ¢ — 0 (g > 0), if samples and neu-
ron weights are finite length vectors, the “V” shaped
function h(-) is so stretched that no neuron is able to
“find” even a wide valley inside the space spanned by
the samples.

These algorithmic aspects suggest a close relation-
ship between our approach and the Deterministic An-
nealing [9], where g and the temperature parameter of
[9] are inversely proportional.

Nevertheless, it is important to highlight one funda-
mental difference between the Deterministic Annealing
(DA) and the proposed algorithm: while the DA ap-
proach tries to find a global minimum by gradually
reducing the temperature parameter, each neuron of
the MLP-CLUST tries to find a local minimum of the
cost function. Therefore, although a gradual variation
of g is usefull, if it is done from bottom to top (Anneal-
ing), all the neurons will converge to the same global
minimum, i.e. the same valley, which, obviously, is to
be avoided here!

On the other hand, in order to investigate pdf valley
on several metric scales, we can set g to a high enough
initial value, and then to slowly decrease this parameter
to 0, i.e. a heating instead of an annealing strategy.

As a result, the whole MLP-CLUST can be summa-
rized as follows:

1. Raw input data is preprocessed as follows: let x
be an N;-dimensional real valued column vector,
representing an input sample, and let z; be the
i-th element of x. Then each z; (1 < i < Nj;)
is divided by the maximum absolute value among
all i-th inputs, from all input samples. Thus, all
input vectors are gathered inside a hypercube of
unitary edge;

2. g is initialized with a big enough go.

A preliminary result based on the study of the
stability points of the cost function .J;, for straight
valleys, provided the following helpful inequation:
go > 2 x atanh(0.486)/GAP,,in, where GAPp,in
stands for the width of the narrowest valley we are
looking for. Clearly, GAP,,;, is almost always un-
known in real-world clustering problems but, even
a rough estimation of it can be helpful in setting
parameter go (note that, as all input vectors are
gathered inside a hypercube of unitary edge, then
GAP,,in < +/N;, where N; stands for the dimen-
sion of the hypercube.);

3. « is initialized with small positive real;

4. Each neuron’s synaptic weights and bias are ran-
domly initialized, according to Section 4;

5. For n., =1 to N, epochs:

e Data samples are randomly presented as in-
puts;

o Weights and biases are updated according to
Equations 4 and 5;

e g is linearly decreased by Ay = go/Nep;

e Weights of each neuron are normalized.

6 Automatic Binary Labels and
Cluster Cardinality

An interesting feature of the MLP-CLUST is the pos-
sibility of automatic cluster label generation. It can
be provided by the following simple procedure: given
an input sample (vector) x,,, it comes form a cluster
whose label is given by:

L(xpn) = sign(ym) (6)

where sign(-) stands for the signal function, whose out-
put is a £1 valued vector, and y,, is the corresponding
NN output.

Note that each neuron output corresponds to one
bipolar bit in the label vector, as well as, in the MLP-
CLUST approach, each neuron contributes to between-
cluster boundary by providing a single hyperplane.
Therefore, if two clusters have labels almost identical,
differing by just one label bit, then they (the clusters)
are neighbors in the N;-dimensional feature space, sep-
arated by one single hyperplane.

Defining a cluster as any N;-dimensional subspace,
free of neuron hyperplanes, inside which lays at least
one input sample, we can estimate the total number of
clusters by feeding the neural network with all available
samples and counting the number of different labels.

In fact, when the number of neurons is high, such a
procedure often produces an also high and meaningless
number of clusters. For instance, even if clusters with
hundreds of samples are found, a single isolated sample
may be considered as being a cluster too.

Note, however, that as the number of neurons in-
creases, even when the gaps between clusters are not
clear (noisy case), the number of spurious small clusters
is limited, i.e. there is an upper bound proportional to
parameter g.

Nevertheless, in order to avoid the (possible) esti-
mation of a high number of too-small clusters, we em-
pirically set that any cluster with cardinality below to
10% of the biggest cluster cardinality is discarded.

It is worth noting that even (geometrically) small
clusters may have high cardinality. In fact, small but
relevant clusters frequently are related to very concen-
trated (picked) conditional probability densities (thus
providing high-cardinality clusters in sample datasets).

Another important issue concerning cluster cardi-
nality is the dependence of each neuron parameter con-
vergence on the size (cardinality) of clusters in each
side of the boundary provided by the neuron. From
Equations 4 and 3, it is clear that this dependence is
stronger for data points close to the boundary, and it
is controlled by parameter g. For instance, note that
points far from the boundary provide a A; close to
zero. Consequently, as parameter g decreases, the in-
fluence of cluster sizes on the boundary positioning also
decreases.

7 Practical Results and Illustra-
tions

In this section, some computational results are pre-
sented. The first one is based on artificial data, i.e.
samples are generated throughout random number gen-
erator algorithms, in order to highlight some inter-
esting capabilities of the MLP-CLUST. On the other
hand, two experiments based on real data are also re-
ported, providing a more realistic scenario for testing
the MLP-CLUST capabilities.

7.1 Non-radial Dispersion Clusters

If more than one layer of neurons is used, the MLP-
CLUST is able to find even non-linear between cluster
boundaries. In order to provide a simple illustration,
Figure 2 shows the result of the non-linear mapping of
each layer when a single layer is not enough to provide
a between cluster boundary.

Indeed, it is similar to what happens when an MLP
is adjusted with the backpropagation algorithm[4], in
classification (supervised) tasks. Nevertheless, it is im-
portant to highlight that, here, all neurons in both lay-
ers are locally adapted with the same Hebbian rule of
Equations 4 and 5.

In this illustration, each neuron in the first layer
finds a conditional pdf valley. As a result, a single
layer finds 4 clusters, but the neuron outputs are not
close to +1, as expected for well-separated clusters.

Finally, by using the first layer output as second
layer input, a single neuron is now enough to provide
a straight between cluster boundary. Moreover, since

the neuron output is quite close to +1, it can be used
as a evidence of the existence of 2 (not 4) clusters, and
that there is no need for more layers.

a,

; N

Figure 2: Tllustration of the use of more than one layer.
T(-) stands for the nonlinear mapping of the first layer,
while (G; and G4 are labels for clusters 1 and 2, respec-
tively.

Nonetheless, we highlight that learning parameters
must be properly tuned in each layer, otherwise the
multilayer approach may fail in many ways (e.g. spuri-
ous valleys may be generated by unappropriate nonlin-
ear mapping in the first layer). Clearly, it raises many
questions that are not going to be addressed here. For
a while, we focus our investigation on single layer ca-
pabilities.

7.2 Clustering Italian Wines Data

For this experiment we use a wine data set, ac-
quired from the University of California (UCI Machine
Learning Repository). This data set consists of 13
continuous-valued features belonging to three physical
classes, corresponding to results from chemical analy-
sis of wine produced by three different cultivators from
the same region of Italy. This data set contains 178
feature vectors, with 59 in class 1, 71 in class 2, and 48
in class 3.

Note that we have classes, not clusters. However, to
compare the MLP-CLUST to others clustering algo-
rithms, we assume that those classes also form clusters
on the 13-dimensional feature space, as it was done in
[5] and references therein.

As a consequence, after clusters are estimated, we
put into correspondence cluster labels and classes la-
bels. Thus, samples whose cluster labels do not cor-
respond to the expected class labels are regarded as
“misclassifications”.

For this experiment, all sample vectors were mixed
up, and we used the following parameters: o = 107%, ¢
was decreased from 2 to 1 for N., = 2000 epochs, with
a single layer of 50 neurons.

Figure 3 shows a single run of th MLP-CLUST with
the Wine dataset, where a stable configuration of 3
clusters is clearly found for 1.25 < g < 1.75.

Results presented in Table 1 are averaged and
rounded “misclassications”. That is, we evaluate the

o Clusters

Number of Clusters

Figure 3: A single run with the Wine dataset (UCI
database).

MLP-CLUST performance by computing the number
of “misclassications” for g & 1.5, over 10 independent
runs, and then these results are averaged and rounded.

Table 1: Performance Comparison with Italian Wines
Data.

Algorithm | “misclassifications” |
MLP-CLUST 08
Gustafson-Kessel (GK) 32
Gath and Geva (GG) 49
Fuzzy c-means (FCM) 54
Non-Euclidean FCM(NEFCM) 09

As we can see, the MLP-CLUST outperforms the
other algorithms with this specific dataset. It indicates
that classes indeed correspond to clusters and that,
probably, between-classes separations are well approx-
imated by 13-dimensional hyperplanes in this case.

7.3 Ultrasonic Data

For this experiment with the MLP-CLUST, we have
used parameters extracted form echoed ultrasound
pulses as input samples [1]. These pulses were ob-
tained from ultrasound sensors placed in front of 6
kinds (classes) of reflectors, 50 cm far form the pulse
source. The 6 kinds of reflectors can be summarized as
follows: - Convex wall corner, 90° (Class #1);

- Chair leg, circular transversal section (Class #2);

- Table leg, circular transversal section (Class #3);

- Concave wall corner 90° (Class #4);

- Flat wall (Class #5);

- Table leg, squared transversal section (Class #6).
And the pulse parameters to be clustered are: total
area under the pulse shape and pulse duration.

Note that the use of only two pulse parameters is
a helpful choice in order to provide graphical illustra-
tions. Nevertheless, there is no theoretical limitation to
the number of such parameters. Indeed, when the pa-
rameters are statistically dependent, the use of higher
dimensional spaces (more parameters), can even facil-
itate the clustering task.

Figure 4 presents the 2-dimensional samples disper-
sion, labeled according to their classes. It is clear that
there exist a strong relationship between pulse classes
and clusters, and even classes 4 and 5 can be considered
as almost separated radial clusters.

AR RN

R .
Bfects gttt
H T Tl \

+ g N I S

201
16 .
121 <

08 | -
04
0.0 ®
04 c2

-0.8

Total area under the pulse
shape (normalized)
@]
w

¢

c1l

2.0 T T T T T T T T T 1
20 -16 -12 08 04 00 04 08 12 16 20

Pulse duration (normalized)

Figure 4: Two-dimensional plot of ultrasonic pulse pa-
rameters.

For this experiment with a single layer MLP-
CLUST, all samples were mixed up, without their
class labels, and we used the following parameters:
a =107*, g was decreased from 10 to 2 for N,, = 400
epochs. In order to not overcharge Figure 5 with too
many lines, only 100 neurons were used.

Figure 5 presents a single but representative trial
with the MLP-CLUST, where subfigures are used to
show the “neuron locus” evolution during the run
(i.e. each line on subfigures represents a linear bound-
ary provided by one neuron, which corresponds to
the locus of points (z1,z2) for which the equation
w; 121 + w; 22 + b; = 0 holds, where i stands for the
neuron index).

Accordingly, the number of clusters, ng, estimated
by the beginning of the algorithm run (from right to
left) is high. On the other hand, when “temperature”
starts to increase or, equivalently, g decreases, more
neighbor samples are clustered together (not necessar-
ily according to the Euclidean distance).

Thus, this temporal evolution of ng with parameter
g tends to be a decreasing one, staying constant for
long intervals of g when a stable clustering pattern is
found. In other words, when neurons find relevant pdf
valleys, they are trapped for longer intervals of g.

Note that, while g is decreased (heating process)
the number of estimated clusters, n¢, gradually tends
to one (trivial solution were all samples are clustered
together).

This gradual variation of ng with g, which in some
sense controls the metric scale of the pdf valley search,
suggests a cluster hierarchy.

Figure 6 illustrates a hierarchic interpretation of
clusters provided by the MLP-CLUST. This interpre-

Number of groups

Figure 5: A single run with ultrasonic data.

tation is made clear by observing the cluster labels (see
Section 6) and comparing then by Hamming distance
measures. As a result, and given the closer relationship
between classes and clusters in this particular case, we
can also show this hierarchical interpretation by using
class labels, as shown in Figure 6.

time G ™

Figure 6: Hierarchic tree suggested by the algorithm.

Moreover, according to the authors of the exper-
iment with ultrasound pulses, pulses from flat wall
(Class #5) and pulses from concave wall corner (Class
#4) are quite similar, and both are also similar, in a
lesser degree, to the pulses from large table lags with
squared transversal section (Class #6). Note that this
“reasoning”” is automatically provided by the algo-
rithm output.

When it is compared to the classical K-means, with
the same data set, the first remarkable difference is
that we must provide the K-means with the number of
clusters.

Once it is provided, and referring to as good results
the clustering output where cluster centers lay close to
class centers, there are no warranties that the K-means
algorithm is going to converge to this good result.

We experimentally found that, for this problem,
about 25% of trials with the K-means converged to
good results.

On the other hand, the MLP-CLUST provides a
flexible probability of correctly estimating the number
of clusters and, moreover, to obtain a good result. In-
deed, the probability P, of not missing a valley of width
Ar depends on both Ar and the number of neurons N,
according to a Binomial distribution, which yields:

P,=1-(1—-P,)N

where
w/2 w/2
Ar
Pa:%—N / / clar,...,an)da; ...day (7)
—-n/2 —m/2
clar,...,an) = cos | atan

N = N; — 1 and N; is the feature space dimension.

These two formulae are explained in the Appendix.
It is interesting to highlight that, with only 100 neu-
rons, in both theoretical and numerical (over 100 in-
dependent trials) results, the probability of success on
finding all relevant valleys and providing good results
was about 81 %. Moreover, by increasing the num-
ber of neurons we are able to arbitrarily improve this
result.

8 Conclusions

A new connectionist algorithm for data clustering was
presented: the MLP-CLUST, based on local (Hebbian)
adaptation of artificial neurons with sigmoidal activa-
tion functions.

Some interesting algorithm characteristics are: (a)
its implementation simplicity, where each neuron is
adapted every time a new incoming data is provided,
and (b) it is rather a probabilistic approach (instead of
a geometric one) though, unlike classical probabilistic
approach, e.g. the EM algorithm, the MLP-CLUST es-
timates just partially the data pdf. Indeed, it just looks
for pdf valleys, what keeps this new algorithm simpler
than the classical EM based clustering approach.

It was also indicated that, with at least two layers
of neurons locally adapted — i.e. the same Hebbian
algorithm applied to all neurons — it is possible to es-
timate nonlinear between-clusters boundaries, though
we highlight, in Section 7.1, that it raises some im-
portant questions concerning the tuning of parameters
in both neuron layers, what was not yet studied. On
the other hand, it is easy to show that even a single
layer of self-organized neurons is able to fit piecewise
linear between-cluster boundaries. In other words, it is
able to fit even boundaries between non-ellipsoidal clus-
ters. Note that, though we observed this capability in
many practical experiments, it also raises many ques-
tions concerning algorithm convergence properties for
shallow pdf valleys (piecewise liner boundaries usually
are “seen” by neurons as shallow marginal pdf valleys),
to be addressed in the sequel of this work.

Unlike classical supervised MLP, which suffers from
over-dimensioning, the MLP-CLUST has its success
probability increased whenever the number of neurons
is increased.

Another attracting aspect of the proposed algorithm
is that it provides one bipolar label to each estimated
cluster, where such labels keep geometric relationship
similar to that of clusters: closer labels (in Hamming
distance) point to closer clusters (in Euclidean dis-
tance).

Finally, a useful tool provided by the bipolar labels,
together with the heating strategy, is the possibility of
a hierarchical interpretation of more than one stable
cluster partitioning.

Important questions to be properly addressed in fu-
ture works are mainly related to the existence of stable
solution and the study of algorithm convergence as-
pects. For instance, if a continuous spread of input
samples comes from a uniform pdf, clearly, it does not
present pdf valleys to be fit by the neurons. As a conse-
quence, given that data is mapped into a hypercube of
unitary edge, all neurons will diverge toward the out-
side of this hypercube, and a single cluster is “seen” .
On the other hand, if even a shallow pdf valley does ex-
ist (a marginal pdf valley, for instance), it always can
trap neurons for high enough values of parameter g.
Consequently, the study of how to optimize g in order
to accelerate algorithm convergence remains an open
issue.

Furthermore, in the sequel of this work, we are go-
ing to address some important missing points, such
as: (a) the application of the algorithm to an un-
limited stochastic data source, such as a communi-
cation channel model and, by this way, to evaluate
the MLP-CLUSTER performance on channel equaliza-
tion/identification, according to some theoretical issues
presented in [8]; and (b) a study of how parameters g
and a influence the algorithm performance, including
stability and convergence issues.

Acknowledgments

This work was partially granted by both the Conselho
Nacional de Desenvolvimento Cientifico e Tecnoldgico
(CNPq) and the Fundagdo de Amparo a Pesquisa -
Sergipe (FAP-SE).

Appendix: Analytic Calculation

of P,

Given two clusters whose centers are separated from
each other by Ar, P, corresponds to the probability
of a single neuron, initialized as in Section 4, to have
its “neuron valley bottom” (see Section 2) crossing the
line segment that links the two centers. Here we as-
sume, by simplification, that there is a pdf valley bot-
tom along the line linking the two centers, and that
any neuron whose “neuron valley bottom” crosses this

line is able to find the valley position and orientation
through adaptation.

If many clusters are to be considered, P, may corre-
spond to a lower bound if Ar is the distance between
the two closest centers.

In a 2-dimensional feature space, the probability P,
is analogous to that of a line randomly placed — so
that it must intersect the unity circle — crossing the
needle (or a piece of wire) of length Ar inside this circle
(see Figure 7).

As a consequence, a, the angle between the needle
and an axis normal to the above mentioned line, is
a random variable with flat pdf f(a) = 1/7, —7/2 <
a < 7/2. And then, given an instance of a, it is easy to
see, in Figure 7, that the probability of intersection be-
tween needle and line is given by P(a) = Ar cos(a)/2.
Therefore, the averaged probability over all direction
is given by the integral:

w/2

P, = / fla)P(a)da

—m/2

"x
Az) _ Arcc;s(a)

Figure 7: Pa calculation on 2D .

By analogy, in a 3-dimensional feature space, where
the line is replaced by a plane g(z,y) = tan(a,)r +
tan(ay)y + c that intersects the unity sphere, depicted
in Figure 8, and where a, and «, are, respectively,
the plane slopes in the corresponding orthogonal direc-
tion, it is clear that the maximum slope is the gradient
magnitude, given by ||Vg|| = y/tan(a,)? + tan(ay)?.

That is, the (maximum) slope angle through
the direction pointed by the gradient vector is
a = atan(||Vg||). Consequently, as it is illus-
trated in Figure 8, given a, and a,, the probabil-
ity that the plan crosses the needle is P(ay,a,) =
Arcos(y/tan(az)? + tan(ay)?)/2, and the averaged

probability over all directions, in this case, is then:

w/2 w/2
Pa = / / f(amaay)P(amay)damday
—m/2 —7/2

where f(ag, o) = 1/7%, —7/2 < a,,a, < 7/2is a
joint flat pdf, yielding:

w/2 w/2
Ar
P“:W / / clag, ay)dagday,
—m/2 —m/2

where ¢(a,, a,) = cos(atany/tan(a,)? + tan(ay)?).

2 glx.y)=tan(e,)x +tan(a,)y +c

_ Arcos(a)
)
)_, V<l = \/tan(a'x)" +tan(er,)’

_— = atan q|Vg

Figure 8: Pa calculation on 3D .

Finally, Equation 7 is a straightforward generaliza-
tion of the former deduction for feature space dimen-
sions greater than two. Figure 9 shows values of P, ver-
sus feature space dimension from 1 to 60. The rugged
lines correspond to estimations of P, through Monte-
Carlo simulation (i.e. 500.000 random neuron initial-
ization and verification whether the “neuron valley bot-
tom” was or not crossing the line linking two centers
separated from each other by Ar), while the continuous
lines represent the computation of P, with Equation 7.

References

[1] A.R. Almeida, E.O. Freire, C.A. Renné, J.E.S.
Vianna, and R.M. Rosi. Neural network recogni-
tion of geometric references applied to ultrasound
echo signals. Proceedings of the IEEE }3rd Mid-
west Symposium on Circuits and Systems - MWS-
CAS’2000, 2000.

[2] C.C. Calvacante, J.R. Montalvao, B. Dorizzi, and
J.C.M Mota. A neural predictor for blind equaliza-
tion of digital communication systems: Is it plausi-
ble? IEEE Neural Networks for Signal Processing
(NNSP 2000), pages 11-13, December 2000.

0.12

0.107]

Simulation |

‘ s I0IEEGrAL

0.04{

0.02

Dimension

Figure 9: Theoretical and experimental values of Pa
versus dimension.

[3] R.O. Duda and P.E. Hart. Pattern Classifica-
tion and Scene Analysis. Wiley-Interscience, New
York, 1973.

[4] S. Haykin. Neural Networks, A Comprehen-
sive Foundation. Prentice-Hall, Englewood Cliffs,
USA, 2 edition edition, 1999.

[5] N.B. Karayiannis and M.M. Randolph-Gips. Soft
learning vector quantization and clustering al-
gorithms based on non-euclidean norms: Multi-
norm algorithms. IEEFE Trans. Neural Networks,
14(1):89-102, January 2003.

[6] G.W. Milligan and M.C. Cooper. An examination
of procedures for determining the number of clus-
ters in a data set. Psychometrika, pages 159-179,
1985.

[7] S. Mitra, S.K. Pal, and P. Mitra. Data mining
in soft computating framework: A survey. IEEFE
Trans. on Neural Networks, 13(1):3-14, January
2002.

[8] J. R. Montalvao, B. Dorizzi, and J. C. M. Mota.
Channel estimation by symmetrical clustering.
IEEE Trans. on Signal Processing, 50(6):1459-
1469, June 2002.

[9] K. Rose. Deterministic annealing for clustering
compression, classification, regression and related
optimization problems. Proceedings of the IEEFE,
86(11):2210-2239, December 1998.

[10] W.S. Sarle. Cubic clustering criterion. Technical
Report A-108, SAS Institute Inc., Cary, NC, 1983.

[11] N. Schraudolph. Optimization of Entropy with
Neural Networks. PhD thesis, University of Cali-
fornia, San Diego, 1995.

