
Clustering with Multilayer Perceptrons and Self-Organized (Hebbian)LearningJugurta R. Montalv~ao Filho, Eduardo O. Freire, and Murilo A. Bezerra Jr.�AbstractA new local (Hebbian) learning algorithm for arti�-cial neurons is presented. It is shown that, in spiteof its implementation simplicity, this new algorithm,applied to neurons with sigmoidal activation function,performs data clustering by �nding valleys of the prob-ability density function (PDF) of the multivariate ran-dom variables that model incoming data. Some inter-esting features of this new algorithm are illustrated bysome experiments based on both arti�cial data and realworld data.Keywords | Hierarchical clustering, Hebbian learn-ing, Deterministic Annealing, PDF valleys.1 IntroductionClustering is a self organized process that plays an im-portant role in a wide range of �elds, ranging fromtypical applications, as Pattern Recognition and Sig-nal Compression [3], and Knowledge Discovery inDatabases (KDD) [7], to less common ones such ascommunication channel estimation and/or equalization[8, 2].In cluster analysis concerned literature, we easilyidentify two main issues: (a) clustering data into a pre-viously given number of clusters | most popular algo-rithms for clustering are based on both empirical geo-metric criterion (e.g., K-mean and vector quantization(VQ)) and probabilistic models, (e.g., Expectation-Maximization (EM))|, and (b) estimating the numberof clusters | though there are no completely satisfac-tory methods for this task [6], among the most per-forming algorithms, we can �nd the Duda and Hart`stest statistic Je(2)=Je(1) [3], and the Cubic ClusteringCriterion (CCC) [10].Most popular strategies in both issues are basedon clustering multidimensional samples (data) aroundprototypes, cluster centers, where the association of asample to its cluster is based on prede�ned (e.g. Eu-clidean) distance measure from the cluster center. Ac-cordingly, for estimation of the number of clusters, onerule of thumb is to increase it and to choose a con�gu-ration for which the averaged within cluster dispersiondecreases more abruptly.Roughly speaking, classical clustering approaches�The authors are with the Universidade Federal deSergipe (UFS), S~ao Crist�ov~ao, CEP. 49100-000. E-mail:jmontalvao@ufs.br, efreire@ufs.br.

present some well-known drawbacks, such as sensibil-ity to prototypes initialization and inadequacy whencluster shapes are far from ellipsoidal one, while �nd-ing the number of clusters remains a challenging openproblem.It is worth noting that, on the other hand, Multi-Layer Perceptron (MLP) with sigmoidal activationfunctions became popular thanks to its capabilitiesto circumvent similar problems in classi�cation con-text. That is to say that MLP can be quite robustto parameters initialization as well as, in classi�ca-tion tasks, they are suitable to deal with highly non-ellipsoidal class dispersions. However, in spite of itshelpful characteristics, MLPs with sigmoidal activationfunctions are most of the time applied to classi�ca-tion and multi-dimensional regression tasks, and notto clustering tasks.In this paper, we present a new clustering algo-rithm, based on MLP with sigmoidal activation func-tion, where self-organized neurons are adapted by alocal (Hebbian) rule, derived from a probabilistic ap-proach. Thus, each neuron uses the Kullback-Leiblerdivergence, together with a stochastic gradient opti-mization strategy, to �t low density intervals in theProbability Density Function (pdf) that models theRandom Variable (RV) source from which data isdrawn. Hereafter, it will be referred to as pdf valleys.Note that, unlike most clustering approaches, theproposed algorithm does not use prototypes aroundwhich data is gathered | points of maximum data den-sity |, but it rather looks for regions of low data den-sity, which are, by hypothesis, between-clusters bound-ary candidates. As a consequence, the new algorithm,hereafter referred to as the MLP-CLUST, providessome interesting properties, including the possibility ofestimating the number of clusters and also providing ahierarchical interpretation of the estimated clusters.In order to present this new algorithm, this paperis organized as follows: Section 2 presents the neuralnetwork structure of the proposed algorithm and thecost function applied to the adaptation of each neu-ron. In Section 3, a learning strategy is proposed. InSection 4, it is explained how to initialize all parame-ters, while in Section 5, the clustering algorithm itselfis brie
y presented. Section 6 presents a useful featureof the algorithm: its automatic cluster labeling capa-bility. Finally, In Section 7, computational results arepresented. Conclusions and �nal discussions are pro-vided in Section 8.



2 The MLP-CLUST Cost Func-tionThe proposed algorithm is based on a classical NeuralNetwork (NN) model: the MLP [4]. Nevertheless, tobetter explain how it works, we �rst present the clus-tering capabilities of a Single Layer Perceptron (SLP).Indeed, Section 7 presents an illustration of how suchcapabilities can be extended to an MLP.A SLP performs a nonlinear mapping of <Ni on thehypercube ]� 1;+1[No, given by:y = tanh(g(Wx+ b))where x = [x1 x2 : : : xNi ]t is an Ni-dimensional realvalued column vector, representing an input sample,y = [y1 y2 : : : yNo ]t is an No-dimensional column vec-tor, g represents the neuron soma gain, always positive,tanh(�) stands for hyperbolic tangent function, W isthe synaptic weight matrix, and b is the neuron bias(or threshold) vector, both real-valued.In order to present the cost function, since it pro-vides a Hebbian learning rule (i.e. a local rule), we mayfocus on a single neuron, whose output is:yi(x) = tanh(g(wix+ bi))where wi = [wi;1 wi;2 : : : wi;N ], is the i-th row ofW, corresponding to the synaptic weights of the i-thneuron into the layer, and bi corresponds to its bias.Assuming that Yi is a random variable, according tosome theoretical reasons presented in the following, wemight take, as a suitable cost function, the followingexpectation: Ji = �EYiflog(y2i + 1)g (1)where the addition to one avoids singularity.Moreover, de�ning h(x) = (y2i (x)+1) and rewritingthe cost function as follows:Ji = � Z +1�1 fX(x) log(h(x))dx (2)where fX(x) is the multivariate pdf of the randomvariable X, we obtain an expression closely related tothe Kullback-Leiber (K-L) divergence [4], a well-knowntool to compare probability density functions1.Note that, although R +1�1 h(x)dx 6= 1, the functionh(�) is strictly positive for all x 2 <Ni , which allowsthe comparison between this function and the pdf ofX, as follows:DfX(x)kh(x) = �H(X)� Z +1�1 fX(x) log(h(x))dx (3)Since H(X) corresponds to the entropy of X (i.e. theNN input), in order to reduce the K-L distance be-tween fX(x) and h(x), we can only adapt the function1The K-L divergence has some useful properties. Some ofthem, particularly interesting here are its invariance with re-spect to: (a) data amplitude scaling and (b) monotonic non-linear transformation, like the sigmoidal activation functions ofpopular arti�cial neuron.

h(�), which corresponds to minimize the cost functionin Equation 1. Moreover, since 1 � h(x) < 2, it is easyto show that the integral Ji converges to a real numbergreater or equal to 0 and lower than log(2).An alternative informal explanation to the goal ofthe chosen cost function can be provided as follows:let neurons parameters be represented by \V" shapedfunctions | or high-dimensional \hull boat" shapedfunction |, then each neuron must change its positionand concavity width in order to �t the pdf \valleys" or\gaps" { so minimizing Eq. 3. This is specially suit-able for �nding straight valleys of multivariate densityfunctions.Hereafter, the expression \neuron valley" is going tostand for the \V" shaped or \hull boat" shaped func-tion of each neuron, as well as the expression \neuronvalley bottom", a point, line or hyperplane that corre-sponds to the locus of the deepest points of a neuronvalley. Figure 1 provides an illustration to the conceptsconveyed here, for N = 2.
Figure 1: Illustration of the function h(x) of a singleneuron.Note that any algorithm for neuron parametersadaptation based on the minimization of Ji providesa kind of parametric entropy optimization, accordingto N. Schraudolph [11]. Indeed, in [11] and referencestherein, we can �nd a useful discussion about the so-called binary information gain optimization.3 The Local (Hebbian) LearningSome strategies for optimizing neurons parameterswere tested. However, in this paper, only the simplestonline algorithm is presented, where all neuron param-eters are adapted, by stochastic gradient descent, forevery new incoming data. Accordingly, for each newincoming vector input, the i-th neuron must adapt itsj-th weight | corresponding to the synaptic eÆciencyassociated to the scalar input xj | and bias accordingto Equations 4 and 5.� wk+1i;j = wki;j + ��ixjwk+1i;j = wki;j=kwki;jk (4)bk+1i = bki + ��i (5)where �i = g(yi(1�y2i ))(y2i+1) and � corresponds to the learn-ing rate.



4 Parameters SetupBy assuming that no a priori knowledge about the pdfwhich models the data source is available, in order toreduce the chances of missing a pdf valley, we proposethe following weight matrix and bias vector initializa-tion:(a)W is initialized with random numbers uniformlydistributed between �1 and +1;(b) Each i-th row wi of W is then normalized, i.e.kwik = 1;(c) bi is initialized with random numbers uniformlydistributed between 0 and +1.Note that steps (a),(b) and (c), together, are neces-sary to �t the requirement presented in the Appendix.5 The MLP-CLUST AlgorithmAn important feature of this algorithm is its depen-dence on parameter g. The greater g is, the bigger thenumber of pdf valleys seen by the neurons. Equiva-lently, for high values of g, the cost function (Eq. 1)often presents a high number of local minima.Indeed, for g ! +1 the neurons are able to �ndany valley between any two non-overlapped samples.Otherwise, for g ! 0 (g > 0), if samples and neu-ron weights are �nite length vectors, the \V" shapedfunction h(�) is so stretched that no neuron is able to\�nd" even a wide valley inside the space spanned bythe samples.These algorithmic aspects suggest a close relation-ship between our approach and the Deterministic An-nealing [9], where g and the temperature parameter of[9] are inversely proportional.Nevertheless, it is important to highlight one funda-mental di�erence between the Deterministic Annealing(DA) and the proposed algorithm: while the DA ap-proach tries to �nd a global minimum by graduallyreducing the temperature parameter, each neuron ofthe MLP-CLUST tries to �nd a local minimum of thecost function. Therefore, although a gradual variationof g is usefull, if it is done from bottom to top (Anneal-ing), all the neurons will converge to the same globalminimum, i.e. the same valley, which, obviously, is tobe avoided here!On the other hand, in order to investigate pdf valleyon several metric scales, we can set g to a high enoughinitial value, and then to slowly decrease this parameterto 0, i.e. a heating instead of an annealing strategy.As a result, the whole MLP-CLUST can be summa-rized as follows:1. Raw input data is preprocessed as follows: let xbe an Ni-dimensional real valued column vector,representing an input sample, and let xi be thei-th element of x. Then each xi (1 � i � Ni)is divided by the maximum absolute value amongall i-th inputs, from all input samples. Thus, allinput vectors are gathered inside a hypercube ofunitary edge;

2. g is initialized with a big enough g0.A preliminary result based on the study of thestability points of the cost function Ji, for straightvalleys, provided the following helpful inequation:g0 � 2� atanh(0:486)=GAPmin, where GAPminstands for the width of the narrowest valley we arelooking for. Clearly, GAPmin is almost always un-known in real-world clustering problems but, evena rough estimation of it can be helpful in settingparameter g0 (note that, as all input vectors aregathered inside a hypercube of unitary edge, thenGAPmin � pNi, where Ni stands for the dimen-sion of the hypercube.);3. � is initialized with small positive real;4. Each neuron's synaptic weights and bias are ran-domly initialized, according to Section 4;5. For nep = 1 to Nep epochs:� Data samples are randomly presented as in-puts;� Weights and biases are updated according toEquations 4 and 5;� g is linearly decreased by �g = g0=Nep;� Weights of each neuron are normalized.6 Automatic Binary Labels andCluster CardinalityAn interesting feature of the MLP-CLUST is the pos-sibility of automatic cluster label generation. It canbe provided by the following simple procedure: givenan input sample (vector) xm, it comes form a clusterwhose label is given by:L(xm) = sign(ym) (6)where sign(�) stands for the signal function, whose out-put is a �1 valued vector, and ym is the correspondingNN output.Note that each neuron output corresponds to onebipolar bit in the label vector, as well as, in the MLP-CLUST approach, each neuron contributes to between-cluster boundary by providing a single hyperplane.Therefore, if two clusters have labels almost identical,di�ering by just one label bit, then they (the clusters)are neighbors in the Ni-dimensional feature space, sep-arated by one single hyperplane.De�ning a cluster as any Ni-dimensional subspace,free of neuron hyperplanes, inside which lays at leastone input sample, we can estimate the total number ofclusters by feeding the neural network with all availablesamples and counting the number of di�erent labels.In fact, when the number of neurons is high, such aprocedure often produces an also high and meaninglessnumber of clusters. For instance, even if clusters withhundreds of samples are found, a single isolated samplemay be considered as being a cluster too.



Note, however, that as the number of neurons in-creases, even when the gaps between clusters are notclear (noisy case), the number of spurious small clustersis limited, i.e. there is an upper bound proportional toparameter g.Nevertheless, in order to avoid the (possible) esti-mation of a high number of too-small clusters, we em-pirically set that any cluster with cardinality below to10% of the biggest cluster cardinality is discarded.It is worth noting that even (geometrically) smallclusters may have high cardinality. In fact, small butrelevant clusters frequently are related to very concen-trated (picked) conditional probability densities (thusproviding high-cardinality clusters in sample datasets).Another important issue concerning cluster cardi-nality is the dependence of each neuron parameter con-vergence on the size (cardinality) of clusters in eachside of the boundary provided by the neuron. FromEquations 4 and 5, it is clear that this dependence isstronger for data points close to the boundary, and itis controlled by parameter g. For instance, note thatpoints far from the boundary provide a �i close tozero. Consequently, as parameter g decreases, the in-
uence of cluster sizes on the boundary positioning alsodecreases.7 Practical Results and Illustra-tionsIn this section, some computational results are pre-sented. The �rst one is based on arti�cial data, i.e.samples are generated throughout random number gen-erator algorithms, in order to highlight some inter-esting capabilities of the MLP-CLUST. On the otherhand, two experiments based on real data are also re-ported, providing a more realistic scenario for testingthe MLP-CLUST capabilities.7.1 Non-radial Dispersion ClustersIf more than one layer of neurons is used, the MLP-CLUST is able to �nd even non-linear between clusterboundaries. In order to provide a simple illustration,Figure 2 shows the result of the non-linear mapping ofeach layer when a single layer is not enough to providea between cluster boundary.Indeed, it is similar to what happens when an MLPis adjusted with the backpropagation algorithm[4], inclassi�cation (supervised) tasks. Nevertheless, it is im-portant to highlight that, here, all neurons in both lay-ers are locally adapted with the same Hebbian rule ofEquations 4 and 5.In this illustration, each neuron in the �rst layer�nds a conditional pdf valley. As a result, a singlelayer �nds 4 clusters, but the neuron outputs are notclose to �1, as expected for well-separated clusters.Finally, by using the �rst layer output as secondlayer input, a single neuron is now enough to providea straight between cluster boundary. Moreover, since

the neuron output is quite close to �1, it can be usedas a evidence of the existence of 2 (not 4) clusters, andthat there is no need for more layers.

Figure 2: Illustration of the use of more than one layer.T (�) stands for the nonlinear mapping of the �rst layer,while G1 and G2 are labels for clusters 1 and 2, respec-tively.Nonetheless, we highlight that learning parametersmust be properly tuned in each layer, otherwise themultilayer approach may fail in many ways (e.g. spuri-ous valleys may be generated by unappropriate nonlin-ear mapping in the �rst layer). Clearly, it raises manyquestions that are not going to be addressed here. Fora while, we focus our investigation on single layer ca-pabilities.7.2 Clustering Italian Wines DataFor this experiment we use a wine data set, ac-quired from the University of California (UCI MachineLearning Repository). This data set consists of 13continuous-valued features belonging to three physicalclasses, corresponding to results from chemical analy-sis of wine produced by three di�erent cultivators fromthe same region of Italy. This data set contains 178feature vectors, with 59 in class 1, 71 in class 2, and 48in class 3.Note that we have classes, not clusters. However, tocompare the MLP-CLUST to others clustering algo-rithms, we assume that those classes also form clusterson the 13-dimensional feature space, as it was done in[5] and references therein.As a consequence, after clusters are estimated, weput into correspondence cluster labels and classes la-bels. Thus, samples whose cluster labels do not cor-respond to the expected class labels are regarded as\misclassi�cations".For this experiment, all sample vectors were mixedup, and we used the following parameters: � = 10�6, gwas decreased from 2 to 1 for Nep = 2000 epochs, witha single layer of 50 neurons.Figure 3 shows a single run of th MLP-CLUST withthe Wine dataset, where a stable con�guration of 3clusters is clearly found for 1:25 < g < 1:75.Results presented in Table 1 are averaged androunded \misclassications". That is, we evaluate the



Figure 3: A single run with the Wine dataset (UCIdatabase).MLP-CLUST performance by computing the numberof \misclassications" for g � 1:5, over 10 independentruns, and then these results are averaged and rounded.Table 1: Performance Comparison with Italian WinesData. Algorithm \misclassi�cations"MLP-CLUST 08Gustafson-Kessel (GK) 32Gath and Geva (GG) 49Fuzzy c-means (FCM) 54Non-Euclidean FCM(NEFCM) 09As we can see, the MLP-CLUST outperforms theother algorithms with this speci�c dataset. It indicatesthat classes indeed correspond to clusters and that,probably, between-classes separations are well approx-imated by 13-dimensional hyperplanes in this case.7.3 Ultrasonic DataFor this experiment with the MLP-CLUST, we haveused parameters extracted form echoed ultrasoundpulses as input samples [1]. These pulses were ob-tained from ultrasound sensors placed in front of 6kinds (classes) of re
ectors, 50 cm far form the pulsesource. The 6 kinds of re
ectors can be summarized asfollows: - Convex wall corner, 90o (Class #1);- Chair leg, circular transversal section (Class #2);- Table leg, circular transversal section (Class #3);- Concave wall corner 90o (Class #4);- Flat wall (Class #5);- Table leg, squared transversal section (Class #6).And the pulse parameters to be clustered are: totalarea under the pulse shape and pulse duration.Note that the use of only two pulse parameters isa helpful choice in order to provide graphical illustra-tions. Nevertheless, there is no theoretical limitation tothe number of such parameters. Indeed, when the pa-rameters are statistically dependent, the use of higherdimensional spaces (more parameters), can even facil-itate the clustering task.

Figure 4 presents the 2-dimensional samples disper-sion, labeled according to their classes. It is clear thatthere exist a strong relationship between pulse classesand clusters, and even classes 4 and 5 can be consideredas almost separated radial clusters.

Figure 4: Two-dimensional plot of ultrasonic pulse pa-rameters.For this experiment with a single layer MLP-CLUST, all samples were mixed up, without theirclass labels, and we used the following parameters:� = 10�4, g was decreased from 10 to 2 for Nep = 400epochs. In order to not overcharge Figure 5 with toomany lines, only 100 neurons were used.Figure 5 presents a single but representative trialwith the MLP-CLUST, where sub�gures are used toshow the \neuron locus" evolution during the run(i.e. each line on sub�gures represents a linear bound-ary provided by one neuron, which corresponds tothe locus of points (x1; x2) for which the equationwi;1x1 + wi;2x2 + bi = 0 holds, where i stands for theneuron index).Accordingly, the number of clusters, nG, estimatedby the beginning of the algorithm run (from right toleft) is high. On the other hand, when \temperature"starts to increase or, equivalently, g decreases, moreneighbor samples are clustered together (not necessar-ily according to the Euclidean distance).Thus, this temporal evolution of nG with parameterg tends to be a decreasing one, staying constant forlong intervals of g when a stable clustering pattern isfound. In other words, when neurons �nd relevant pdfvalleys, they are trapped for longer intervals of g.Note that, while g is decreased (heating process)the number of estimated clusters, nG, gradually tendsto one (trivial solution were all samples are clusteredtogether).This gradual variation of nG with g, which in somesense controls the metric scale of the pdf valley search,suggests a cluster hierarchy.Figure 6 illustrates a hierarchic interpretation ofclusters provided by the MLP-CLUST. This interpre-



Figure 5: A single run with ultrasonic data.tation is made clear by observing the cluster labels (seeSection 6) and comparing then by Hamming distancemeasures. As a result, and given the closer relationshipbetween classes and clusters in this particular case, wecan also show this hierarchical interpretation by usingclass labels, as shown in Figure 6.

Figure 6: Hierarchic tree suggested by the algorithm.Moreover, according to the authors of the exper-iment with ultrasound pulses, pulses from 
at wall(Class #5) and pulses from concave wall corner (Class#4) are quite similar, and both are also similar, in alesser degree, to the pulses from large table lags withsquared transversal section (Class #6). Note that this\reasoning�� is automatically provided by the algo-rithm output.When it is compared to the classical K-means, withthe same data set, the �rst remarkable di�erence isthat we must provide the K-means with the number ofclusters.Once it is provided, and referring to as good resultsthe clustering output where cluster centers lay close toclass centers, there are no warranties that the K-meansalgorithm is going to converge to this good result.We experimentally found that, for this problem,about 25% of trials with the K-means converged togood results.

On the other hand, the MLP-CLUST provides a
exible probability of correctly estimating the numberof clusters and, moreover, to obtain a good result. In-deed, the probability Pn of not missing a valley of width�r depends on both �r and the number of neurons Nnaccording to a Binomial distribution, which yields:Pn = 1� (1� Pa)NnwherePa = �r2�N �=2Z��=2 ::: �=2Z��=2 c(�1; : : : ; �N )d�1 : : : d�N (7)c(�1; : : : ; �N ) = cos0@atan0@vuut NXn=1 tan(�n)21A1AN = Ni � 1 and Ni is the feature space dimension.These two formulae are explained in the Appendix.It is interesting to highlight that, with only 100 neu-rons, in both theoretical and numerical (over 100 in-dependent trials) results, the probability of success on�nding all relevant valleys and providing good resultswas about 81 %. Moreover, by increasing the num-ber of neurons we are able to arbitrarily improve thisresult.8 ConclusionsA new connectionist algorithm for data clustering waspresented: the MLP-CLUST, based on local (Hebbian)adaptation of arti�cial neurons with sigmoidal activa-tion functions.Some interesting algorithm characteristics are: (a)its implementation simplicity, where each neuron isadapted every time a new incoming data is provided,and (b) it is rather a probabilistic approach (instead ofa geometric one) though, unlike classical probabilisticapproach, e.g. the EM algorithm, the MLP-CLUST es-timates just partially the data pdf. Indeed, it just looksfor pdf valleys, what keeps this new algorithm simplerthan the classical EM based clustering approach.It was also indicated that, with at least two layersof neurons locally adapted | i.e. the same Hebbianalgorithm applied to all neurons | it is possible to es-timate nonlinear between-clusters boundaries, thoughwe highlight, in Section 7.1, that it raises some im-portant questions concerning the tuning of parametersin both neuron layers, what was not yet studied. Onthe other hand, it is easy to show that even a singlelayer of self-organized neurons is able to �t piecewiselinear between-cluster boundaries. In other words, it isable to �t even boundaries between non-ellipsoidal clus-ters. Note that, though we observed this capability inmany practical experiments, it also raises many ques-tions concerning algorithm convergence properties forshallow pdf valleys (piecewise liner boundaries usuallyare \seen" by neurons as shallow marginal pdf valleys),to be addressed in the sequel of this work.



Unlike classical supervised MLP, which su�ers fromover-dimensioning, the MLP-CLUST has its successprobability increased whenever the number of neuronsis increased.Another attracting aspect of the proposed algorithmis that it provides one bipolar label to each estimatedcluster, where such labels keep geometric relationshipsimilar to that of clusters: closer labels (in Hammingdistance) point to closer clusters (in Euclidean dis-tance).Finally, a useful tool provided by the bipolar labels,together with the heating strategy, is the possibility ofa hierarchical interpretation of more than one stablecluster partitioning.Important questions to be properly addressed in fu-ture works are mainly related to the existence of stablesolution and the study of algorithm convergence as-pects. For instance, if a continuous spread of inputsamples comes from a uniform pdf, clearly, it does notpresent pdf valleys to be �t by the neurons. As a conse-quence, given that data is mapped into a hypercube ofunitary edge, all neurons will diverge toward the out-side of this hypercube, and a single cluster is \seen��.On the other hand, if even a shallow pdf valley does ex-ist (a marginal pdf valley, for instance), it always cantrap neurons for high enough values of parameter g.Consequently, the study of how to optimize g in orderto accelerate algorithm convergence remains an openissue.Furthermore, in the sequel of this work, we are go-ing to address some important missing points, suchas: (a) the application of the algorithm to an un-limited stochastic data source, such as a communi-cation channel model and, by this way, to evaluatethe MLP-CLUSTER performance on channel equaliza-tion/identi�cation, according to some theoretical issuespresented in [8]; and (b) a study of how parameters gand � in
uence the algorithm performance, includingstability and convergence issues.AcknowledgmentsThis work was partially granted by both the ConselhoNacional de Desenvolvimento Cient���co e Tecnol�ogico(CNPq) and the Funda�c~ao de Amparo �a Pesquisa -Sergipe (FAP-SE).Appendix: Analytic Calculationof PaGiven two clusters whose centers are separated fromeach other by �r, Pa corresponds to the probabilityof a single neuron, initialized as in Section 4, to haveits \neuron valley bottom" (see Section 2) crossing theline segment that links the two centers. Here we as-sume, by simpli�cation, that there is a pdf valley bot-tom along the line linking the two centers, and thatany neuron whose \neuron valley bottom" crosses this

line is able to �nd the valley position and orientationthrough adaptation.If many clusters are to be considered, Pa may corre-spond to a lower bound if �r is the distance betweenthe two closest centers.In a 2-dimensional feature space, the probability Pais analogous to that of a line randomly placed | sothat it must intersect the unity circle | crossing theneedle (or a piece of wire) of length �r inside this circle(see Figure 7).As a consequence, �, the angle between the needleand an axis normal to the above mentioned line, isa random variable with 
at pdf f(�) = 1=�, ��=2 �� � �=2. And then, given an instance of �, it is easy tosee, in Figure 7, that the probability of intersection be-tween needle and line is given by P (�) = �r cos(�)=2.Therefore, the averaged probability over all directionis given by the integral:Pa = �=2Z��=2 f(�)P (�)d�Pa = �r2� �=2Z��=2 cos(�)d� = �r� (8)

Figure 7: Pa calculation on 2D .By analogy, in a 3-dimensional feature space, wherethe line is replaced by a plane g(x; y) = tan(�x)x +tan(�y)y+ c that intersects the unity sphere, depictedin Figure 8, and where �x and �y are, respectively,the plane slopes in the corresponding orthogonal direc-tion, it is clear that the maximum slope is the gradientmagnitude, given by krgk =ptan(�x)2 + tan(�y)2.That is, the (maximum) slope angle throughthe direction pointed by the gradient vector is� = atan(krgk). Consequently, as it is illus-trated in Figure 8, given �x and �y, the probabil-ity that the plan crosses the needle is P (�x; �y) =�r cos(ptan(�x)2 + tan(�y)2)=2, and the averaged



probability over all directions, in this case, is then:Pa = �=2Z��=2 � � � �=2Z��=2 f(�x; �y)P (�x; �y)d�xd�ywhere f(�x; �y) = 1=�2;��=2 � �x; �y � �=2 is ajoint 
at pdf, yielding:Pa = �r2�2 �=2Z��=2 � � � �=2Z��=2 c(�x; �y)d�xd�ywhere c(�x; �y) = cos(atanptan(�x)2 + tan(�y)2).

Figure 8: Pa calculation on 3D .Finally, Equation 7 is a straightforward generaliza-tion of the former deduction for feature space dimen-sions greater than two. Figure 9 shows values of Pa ver-sus feature space dimension from 1 to 60. The ruggedlines correspond to estimations of Pa through Monte-Carlo simulation (i.e. 500.000 random neuron initial-ization and veri�cation whether the \neuron valley bot-tom" was or not crossing the line linking two centersseparated from each other by �r), while the continuouslines represent the computation of Pa with Equation 7.References[1] A.R. Almeida, E.O. Freire, C.A. Renn�o, J.E.S.Vianna, and R.M. Rosi. Neural network recogni-tion of geometric references applied to ultrasoundecho signals. Proceedings of the IEEE 43rd Mid-west Symposium on Circuits and Systems - MWS-CAS'2000, 2000.[2] C.C. Calvacante, J.R. Montalv~ao, B. Dorizzi, andJ.C.MMota. A neural predictor for blind equaliza-tion of digital communication systems: Is it plausi-ble? IEEE Neural Networks for Signal Processing(NNSP 2000), pages 11{13, December 2000.
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