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Jugurta R. Montalṽao Filho and Eduardo O. Freire

Abstract— Identity verification through fusion of features from
keystroke dynamics and speech is addressed in this paper.
We experimentally compare performances from identity veri-
fication algorithms based on fusion of median pitch (prosodic
level information), mel-frequency cepstral coefficients (short-time
spectral level information) and keystroke dynamics (down-down
intervals). These experimental results are also compared to the
corresponding unimodal performances. All experiments are car-
ried out on a small but true multimodal public database. Three
fusion strategies are experimentally compared. A nonnegligeable
performance improvement is then observed, mainly with a simple
linear fusion strategy based on fusion of estimates.

Index Terms— Multimodal Biometry, Keystroke Dynamics,
Speaker Verification, Typist Verification, Biometrics Fusion.

I. I NTRODUCTION

In biometrc-based systems for identity verification, static
and/or dynamic biometric measures may be used as personal
“passwords”. Consequently, most security systems based on
biometric signals demand specific data acquisition hardware.

Nevertheless, there are some possible exceptions to this rule.
One of them is typing biometrics, more commonly referred to
as keystroke dynamics. Indeed, keystroke dynamics looks at
the way a person types or pushes keys on a keyboard.

Furthermore, thanks to the widespread use of voice com-
munication over the Internet, headset devices and soundcards
(with analogic/digital converter inside) became almost as com-
mon as the keyboard itself, in conventional personal computer
setups.

In this work, we address identity verification with both bio-
metric signals: speech and keystroke dynamics, first through
unimodal approaches, with straightforward algorithms, and
finally through fusion of those biometrics, at the matching
score level[1], [2].

Fusion of two or more biometrics in automatic identity
verification systems can provide more reliable systems and,
recently, this issue has received an increasing attention (see
[3], [4], [1], [2], for instance).

Nevertheless, to the best of our knowledge, there is no pre-
vious work in the literature that addresses keystroke dynamics
and speech biometrics fusion, though it seems to be potentially
useful, mainly if we consider Internet applications.

Furthermore, in spite of the weak discrimination between
users that keystroke usually provides (excepting some experi-
ments with long typed texts, as in [12]), it is almost immune to
background noise, if compared to speech signals. As a result,
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we may expect a bimodal system better than individual ones,
and more robust to noise.

This paper is organized as follows: in Section II, the data
acquisition procedure is presented. Then, in Section III, it
is explained how features are extracted from speech and
keystroke dynamics, along with a brief description of the
algorithms used for features comparison. In Section IV, fusion
strategies used in this work are presented and, finally, both
unimodal and multimodal experimental results on identity
verification are presented in Section V.

II. DATA ACQUISITION

Both speech and keystroke samples correspond to signals
recorded during the uttering/typing of a single set of four
words in Portuguese —“chocolate, zebra, banana, táxi.” —
equally spelled in English, apart from the accent in “táxi”.

Each subject uttered/typed this set of four words 10 times,
5 (five samples) during a first session, and 5 more samples
during a second session, about a month later.

All subjects, men and women not necessarily familiar
to a computer keyboard, were invited to type on the very
same conventional keyboard (standard 101/102 keys, Brazilian
layout - similar to the EUA layout), in our laboratory, in both
sessions. Sequences of down-down (DD) time intervals from
two keystrokes were thus recorded.

Likewise, during each session, each subject was asked to
utter the same four words five times, using a conventional
headset (electret microphone plus headphone), whose micro-
phone was plugged to an Analogic/Digital converter. Speech
signals were thus digitalized and recorded with 16 bits per
sample, at 22050 samples per second. All recordings were
made in our laboratory, under low background noise. For
a while, only 10 subjects were invited to take part in the
experiment.

Several approaches toward studying fusion, presented in the
literature (see [5] and references therein), use virtual identities,
also known as “chimeric” users, where a biometric modality
from one person is paired with the biometric modality of
another person. By contrast, in our experiments, the database
is a true multimodal set of samples, publicly available (see
Section VI).

In order to simplify explanation, we denote samples as
follows: each subjectSi, i = 1, 2, . . . , 10, provided 10 bimodal
samplessi,m, m = 1, 2, . . . , 10, were samples fromm = 1
to m = 5 were recorded during the first session, whereas
samples fromm = 6 to m = 10 were recorded during the
second session, about one month later.



III. F EATURESEXTRACTION AND COMPARISON

From each recorded sample,si,m, three kind of features are
extracted, namely:

(a) Long-term spectral features: median pitch from structured
utterances (duration of each utterance: 3s);

(b) Short-term spectral features: sequences of 13 Mel Fre-
quency Cepstral Coefficients (MFCC) vectors, from the
same utterances of (a);

(c) Keystroke based features: sequences of DD time intervals
from the typing of structured texts (31 keystrokes).

It is worth noting that, for the speaker recognition task,
two levels of information are taken into account [6]: spectral
level, through MFCC vectors; and prosodic level, through the
median of the pitch variation in each utterance.

Since typed texts are structured (i.e. the very same text
was typed by every subject), keystroke samples are compared
according to the simplest algorithm proposed in the seminal
work on keystroke dynamics by Bleha et al. [7]. However,
according to [8], we know that algorithm performance can be
greatly improved if the nonlinear memoryless mapping

g(∆t) =
1

1 + exp
(
−K(loge(∆t)−µy)

σy

)

where K = 1.7, µy = −1.56 and σy = 0.65 is applied to
each DD interval,∆t, prior to comparison.

Indeed, it is shown, in [8], that the random variable that
models DD intervals is approximately log-normal and, conse-
quently, the memoryless mappingg(·) significantly improves
performance of verification algorithms that do not compensate
for the unbalanced probability density functions of this random
variable.

The resulting comparison between keystroke timing samples
from each pair of (multimodal) sampless(i,m) ands(j, n) —
i.e. samplesm andn, from subjectsi and j, respectively —
is a distance denoted bydK(s(i, m), s(j, n)).

On the other hand, each utterance (3 s of digital audio) is
pre-processed as follows:

1. The signal is split into nonoverlapping time frames of 45
ms;

2. Pitch is estimated from each frame;
3. From the estimated pitch and the frame power, each frame

is classified as voiced or unvoiced;
4. Unvoiced frames are discarded;
5. Median pitch is estimated from the remaining frames

(only voiced signals);
6. Finally, from each remaining window, a sub-window of

10 ms is taken and then mapped into 13-MFCC column
vectors.

Consequently, from step 5, a median pitch (scalar) is esti-
mated from each utterance, whereas, from step 6, a sequence
of 13-dimensional vectors (a matrix, where each column is a
MFCC from a frame) is obtained.

Median pitchs from (multimodal) sampless(i, m)
and s(j, n), are compared in a straightforward manner:
dP (s(i,m), s(j, n)) is just the absolute difference between
median pitchs froms(i,m) ands(j, n).

Finally, concerning the comparison of two utterances
through its short-term spectral features, i.e. their respective
sequences of MFCC, vectors are aligned through time warp-
ing [11] and Euclidean (l2-norm) distances between corre-
sponding vectors are summed up to provide the distance
dM (s(i,m), s(j, n)).

Therefore, from each pair of bimodal sampless(i, m) and
s(j, n), three unimodal distances are obtained, namely:dK , dP

anddM , that can be used separately, for monomodal identity
verification, or all together, for multimodal verification.

IV. DATA FUSION STRATEGY

Our approach is based on the assumption that metric fusion,
or fusion at the match score level, according to [2], can
outperform decision fusion, or fusion at the decision level,
in terms of false alarme rate (FAR) and false rejection rate
(FRR). It is a quite straightforward reasoning because, clearly,
decision fusion can be regarded as a specific case of metric
fusion, but the contrary is not true.

Accordingly, we regard each column vectord =
[dP , dM , dK ]T as a point, in the 3D space, to be classified true
(Class 1, corresponding to distances between samples from the
same subject) or false (Class 2, otherwise). That is to say that
the fusion problem become a standard classification problem,
where two classes are to be considered.

From this point of view, we dispose of two main approaches
to implement distances fusion: (a) Classification after linear
projection of incoming vector — linear classification boundary
— or (b) Classification of pointsd with a nonlinear boundary
between classes.

A. Linear Data Fusion with Fisher’s Linear Discriminant

A well-known approach to obtain a linear discriminant
boundary is the Fisher’s Linear Discriminant (FLD)[10]. In
few words, the Fisher’s solution projects points onto a specific
vectorvF , i.e.:

yF = dT vF

Clearly, ford = [dP , dM , dK ]T andvF = [vP , vM , vK ]T , for
instance,yF is just a weighted sum of distances:

yF = vP dP + vMdM + vKdK

The particularity of the vectorvF comes from the way it
is calculated, i.e.:

vF =
(
(R1 + R2)

−1 (µ1 − µ2)
t
)

whereµi andRi stand for the mean and the covariance matrix
of classi. In this case, we have just two classes:

• Class 1 - where samples are vectors,d, of distances
between features from the same subject.

• Class 2 - samples are vectors of distances between
features from two different subjects;

This projection vector,vF , is optimal in the sense that it
finds a tread-off between within-class dispersion minimiza-
tion and between-class distance maximization. Consequently,
classification accuracy is improved when decision is taken



by comparing the scalar projectiony to a preset decision
threshold.

Unfortunately, it is not optimized in terms of classification
performance, since the decision error minimization is a more
complex problem than squared error (dispersion) minimiza-
tion.

B. Linear Data Fusion based on Optimal Estimation

Another interesting linear fusion approach comes from the
optimal fusion of estimates theory, commonly applied to fusion
of signal from different sensors (in robotics [9], for instance).

Let x̂1, x̂2 and x̂3 be independent measurements ofx
(a constant, for instance), disturbed by additive unbiased
measurement errorsn1, n2 and n3, respectively, modeled as
independent random variables. Then, the best linear fusion of
estimates, i.e.:

yS = a1x̂1 + a2x̂2 + a3x̂3 (1)

that minimizes the variance ofyS , is obtained when [13]:

ai =
σ2

j σ2
k

σ2
i σ2

j + σ2
i σ2

k + σ2
j σ2

k

(2)

i, j, k ∈ 1, 2, 3 and i 6= j, i 6= k, j 6= k.
In order to apply this approach to distances between features

dP , dM and dK , we should first “centralize” them so that,
given that features come from the same subject, all distances
are around zero, otherwise, they are closer to one. Thanks
to this centralization, we can now see all distances as noisy
measurements of a single distance that equals 0 when features
come from a single subject — Class 1 —, and equals 1
otherwise — Class 2.

This centralization is obtained as follows:

d̆x =
dx − µ1,x

µ2,x − µ1,x
, µ2,x 6= µ1,x

where x ∈ {P,M, K}, and µ1,x, µ2,x stand for one-
dimensional means of classes 1 and 2, respectively.

Finally, the Simplified Fusion of Estimates (SFE) is given
by:

yS = aP d̆P + aM d̆M + aK d̆K

where indicesP , M and K play the role of 1, 2 and 3,
in Equation 2, respectively. It is worth noting that, in this
approach, a conditional fusion of estimates is provided. More
precisely, conditionally to the fact that biometric multimodal
features come from the same subject or not, centralized
distancesd̆P , d̆M and d̆K are noisy estimates of constants
0 or 1, respectively.

Figure 1 illustrates the centralization procedure.

C. Non-Linear Data Fusion

In Figure 2, a 2D plot of samples ofdM versussamples
of dK illustrates that, though a linear classification boundary
seems to provide a good solution (in terms of classification er-
ror), it is also clear that a non-linear boundary can, potentially,
outperform the linear one.

A quite simple but useful nonlinear classification strategy is
the Bayesian Classification for Normal Distribution (BCND),

Fig. 1. Distances centralization procedure.

Fig. 2. A 2D projection:dM versusdM .

where it is assumed that each class corresponds to a random
variableΩ, and that both variables are Normal. Accordingly,
each class has a 3-dimensional multivariate normal density
probability given by:

p(d|ωk) =
1√

(2π)3|Rk|
exp

(−0.5(d− µk)tR−1
k (d− µk)

)

Assuming thata priori probabilities of classes are the same,
d is then classified by comparingp(d|ω1) to p(f |ω2). Fur-
thermore, in order to provide a flexible balance between FAR
and FRR, a parameterλ may be included, yielding the new
decision rule:d is in classk if

p(d|ωk) > λp(f |ωl) ∀k 6= l

This rule provides a quadratic (thus nonlinear) decision bound-
ary [10].

Figure 3 illustrates the use of single Gaussians to model
classes. Note that mixtures of Gaussians or even Multi-Layer
Perceptrons may be alternatively used, at the price of increased
computational burden.

V. EXPERIMENTAL SETUP AND RESULTS

Since our database was built up in two sessions, providing
5 samples per subject per sec session, we do simulate an



Fig. 3. Modeling classes with single Gaussians.

enrollment procedure by using only samples from the first ses-
sion as user models (profiles), and performing user verification
exclusively with samples from the second session.

Only one sample from each subject, sampled during the
first session, is to be used as subject model (profile), and each
model is compared to each single sample from the second
session, thus 2500 (50 possible models× 50 samplesxi)
comparisons are carried out, being
(a) 250 with template and test signals from the same subject,

and
(b) 2250 with template and test signals from different sub-

jects.
For simulations whose results are presented in this section,

we refer to the 250 comparisons in (a) as true verification
attempts, while the 2250 comparisons in (b) are seen as false
ones.

In all experiments, half randomly chosen comparison, i.e.
125 true attempts and 1125 false ones, are used to estimate
the classifiers parameters, such as means, covariances and
EER thresholds, while the remaining comparisons are used
for test. Hence, experimental results presented in this section
were obtained from50% of the 2500 comparisons distances.

A. Unimodal Experiments

When simple unimodal verification experiments are inde-
pendently performed with distancesdK , dP and dM , the
corresponding results, in terms of false alarme rate (FAR),
false rejection rate (FRR) and equal error rate (EER, the
operational point for which FAR equals FRR), are presented
in Table I, and Figure 4 illustrates the dependence of FAR and
FRR on the threshold choice.

B. Multimodal Experiments

For the multimodal experiments, distances were fused by
using (see Section IV):

TABLE I

UNIMODAL VERIFICATION PERFORMANCE — 1 ENTRY PER ENROLLMENT,

1 ENTRY PER VERIFICATION.

Mode EER

Keystroke 14.8%

Pitch 19%

MFCC 9.7%

Fig. 4. FAR and FRR from keystroke samples only.

• The Fisher’s Linear Discriminant (FLD);
• Simplified Fusion of Estimates (SFE);
• Bayesian Classification for Normal Distribution (BCND).

Figures 5 and 6 illustrate performance results from fusion of
median pitch distance (dP ), MFCC distancedM and keystroke
distance (dK), with FLD and SFE, respectively.

Fig. 5. FAR and FRR from fusion ofdP , dM anddK , with FLD.

Alternatively, Figures 7 and 8 are Detection Error Trade-
off (DET) curves, corresponding to the same results shown in
Figures 5 and 6.

In order to allow a closer comparison between the two linear
fusion strategies, namely FLD and SFE, Figure 9 shows the
two DET curves together.



Fig. 6. FAR and FRR from fusion ofdP , dM anddK , with SFE.

Fig. 7. DET curve from fusion ofdP , dM anddK , with FLD.

Tables II, III and IV present some results, in terms of
EER, with the three fusion strategies: FLD, SFE and BCND,
respectively.

Note that for fusion of just two distances with SFE, we
should replace Equations 1 and 2 with

yS = a1x̂1 + a2x̂2

and

a1 =
σ2

2

σ2
1 + σ2

2

a2 =
σ2

1

σ2
1 + σ2

2

respectively.

TABLE II

MULTIMODAL VERIFICATION PERFORMANCE WITH FLD — 1 ENTRY PER

ENROLLMENT, 1 ENTRY PER VERIFICATION.

FLD Fusion EER

Keystroke and Pitch 8.3%

MFCC and Pitch 9.6%

Keystroke and MFCC 8.4%

Pitch, MFCC and Keystroke 8.0%

Fig. 8. DET curve from fusion ofdP , dM anddK , with SFE.

Fig. 9. DET curve from fusion ofdP , dM anddK , with FLD.

VI. D ISCUSSION ANDCONCLUSIONS

According to the results presented in Section V, SFE
approach seems to outperform both FLD and BCND, what
is quite a surprising result. Indeed, we can barely raise some
hypothesis to explain the superiority of this simple linear
fusion approach, but we believe that it is related to the “shape”
(dispersion) of Class 2 (see, for instance, the dashed contour in
Figure 10), whose average diameter is much greater then the
length of a suitable classification boundary (between-classes
interface).

According to this first attempt to explain SFE superiority,
we believe that most data in Class 2 are far from any suitable
decision boundary. Nevertheless, given its strong contribution
to the covariance matrix of Class 2, both boundaries provided

TABLE III

MULTIMODAL VERIFICATION PERFORMANCE WITH SFE — 1ENTRY PER

ENROLLMENT, 1 ENTRY PER VERIFICATION.

SFE Fusion EER

Keystroke and Pitch 7.9%

MFCC and Pitch 8.4%

Keystroke and MFCC 6.7%

Pitch, MFCC and Keystroke 5.0%



TABLE IV

MULTIMODAL VERIFICATION PERFORMANCE WITH BCND — 1 ENTRY

PER ENROLLMENT, 1 ENTRY PER VERIFICATION.

BCND Fusion EER

Keystroke and Pitch 10.5%

MFCC and Pitch 8.0%

Keystroke and MFCC 9.5%

Pitch, MFCC and Keystroke 5.8%

by FLD and BCND are deviated by them from what could be
a better solution, in terms of EER.

In other words, even if the FLD does minimize the Rayleigh
quotient [10], which is a quadratic criterion, it deviates from
the minimization of the EER criterion.

Fig. 10. Comparison between FLD and SFE projection vectors.

Fortunately, the SFE approach seems to be less sensitive to
this bad influence of Class 2 dispersion and decision boundary,
probably because of the centralization procedure, and also
because it does not take into account covariance matrices of
classes, as FLD and BCND do.

In fact, those hypothesis are to be tested in future works.
On the other hand, identity verification through fusion

of features from keystroke dynamics and speech was ad-
dressed, and we experimentally studied the performance of
identity verification algorithms based on fusion of median
pitch (prosodic level information), mel-frequency cepstral co-
efficients (short-time spectral level information) and keystroke
dynamics (down-down intervals).

Experimental results, from multimodal biometrics, were
provided along with the corresponding unimodal based per-
formances, in terms of EER.

All experiments were done with a small but true multimodal
public database. Three fusion strategies are applied during
experiments and in almost all of them, speech and keystroke
fusion showed a non-negligible performance improvement.

Our experiments were realized with single samples as ref-
erences (3s of speach and 31 keystrokes per subject prototype,
and the same amount of data per test sample). Though it leads
to quite a limited performance, possibly, it may be useful in
some applications where fast enrollment is suitable and low
security levels are acceptable.

Note, however, that performance can be improved by the
use of more samples (or longer samples). Nonetheless, im-
provements seem to be statistically representative, even with
results from such a small database.

On the other hand, in spite of the smallness of the databases,
it is a true multimodal one, and to allow further compar-
isons between the results reported here and performances
of other approaches, with the same database, multimodal
samples used in this work are available to download at
www.ufs.br/biochaves1. (Internet web site).
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