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Abstract— Identity verification through fusion of features from  we may expect a bimodal system better than individual ones,
keystroke dynamics and speech is addressed in this paper.and more robust to noise.
We experimentally compare performances from identity veri- - rpig haner s organized as follows: in Section II, the data

fication algorithms based on fusion of median pitch (prosodic S d - d. Th in Secti i
level information), mel-frequency cepstral coefficients (short-time acquisition procedure Is presented. en, in Section Il it

spectral level information) and keystroke dynamics (down-down IS explained how features are extracted from speech and
intervals). These experimental results are also compared to the keystroke dynamics, along with a brief description of the

corresponding unimodal performances. All experiments are car- algorithms used for features comparison. In Section 1V, fusion
ried out on a small but true multimodal public database. Three strategies used in this work are presented and, finally, both

fusion strategies are experimentally compared. A nonnegligeable ™ . dal d timodal . tal It identit
performance improvement is then observed, mainly with a simple unimodal and mufimodal experimental results on ldentity

linear fusion strategy based on fusion of estimates. verification are presented in Section V.
Index Terms— Multimodal Biometry, Keystroke Dynamics,
Speaker Verification, Typist Verification, Biometrics Fusion. Il. DATA ACQUISITION

Both speech and keystroke samples correspond to signals
I. INTRODUCTION recorded during the uttering/typing of a single set of four

In biometrc-based systems for identity verification stativt\:'ords in Portuguese —chocolate, zebra, bananaaki.” —
Y y ' ally spelled in English, apart from the accent iaxit.

S ; €
andfor dynamic biometric measures may be used as person ach subject uttered/typed this set of four words 10 times,

"passwords’. Consequently, most security systems based five samples) during a first session, and 5 more samples
biometric signals demand specific data acquisition hardwargj. . P 19 ' P
ring a second session, about a month later.

Nevertheless, there are some possible exceptions to this rule

One of them is typing biometrics, more commonly referred tto 'A;I Csolﬂjeuctfr’ Igego;;gd v\\llveorzeigvi?;(; tr;eieszacr;:]y t;aem\ﬂéa;r
as keystroke dynamics. Indeed, keystroke dynamics looks At P y ' yp y

the way a person types or pushes keys on a keyboard. same con.ve.ntlonal keyboard (standf';\rd 101/102 keys,.Brazman
. . layout - similar to the EUA layout), in our laboratory, in both
Furthermore, thanks to the widespread use of voice com?

o : s%ssions. Sequences of down-down (DD) time intervals from
munication over the Internet, headset devices and soundce}\rNos keystrokes were thus recorded

with analogic/digital converter inside) became almost as com- . ">~ . . :
( g g ) ikewise, during each session, each subject was asked to

mon as the keyboard itself, in conventional personal compute . . . .
setups utter the same four words five times, using a conventional

headset (electret microphone plus headphone), whose micro-

In this work, we address identity verification with both bio- one was plugged to an Analogic/Diaital converter Speech
metric signals: speech and keystroke dynamics, first throu@ﬂ piugg 9 9 - =P

unimodal approaches, with straightforward algorithms, amllgnals were thus digitalized and recorded with 16. bits per
sample, at 22050 samples per second. All recordings were

finally through fusion of those biometrics, at the matchinﬂ]ade in our laboratory, under low background noise. For

score _Ievel[l], [2]. . L L ..a while, only 10 subjects were invited to take part in the
Fusion of two or more biometrics in automatic identity :
e&<per|ment.

verification _sy_stems can proylde more rehat_)le systems an ‘Several approaches toward studying fusion, presented in the
recently, this issue has received an increasing attention (ﬁae 4 : . "

: Iterature (see [5] and references therein), use virtual identities,
[31, [4], [1], [2], for instance).

. also known as “chimeric” users, where a biometric modality
Nevertheless, to the best of our knowledge, there is no pre: . ; ; : . .
. . . rom one person is paired with the biometric modality of
vious work in the literature that addresses keystroke dynamics

. ; g . -.another person. By contrast, in our experiments, the database
and speech biometrics fusion, though it seems to be potentially : . :
L ) o IS’a true multimodal set of samples, publicly available (see
useful, mainly if we consider Internet applications.

Furthermore, in spite of the weak discrimination betwee%ectlon V).

users that keystroke usually provides (excepting some ex ri-In order to simplify explanation, we denote samples as
. y Y pre =Xcepting s p(?ollows: each subjec$;, i =1,2,..., 10, provided 10 bimodal
ments with long typed texts, as in [12]), it is almost immune to

T . SﬁmpIeSsZ—,m, m = 1,2,...,10, were samples fromn = 1
background noise, if compared to speech signals. As a "SKBn = 5 were recorded during the first session, whereas

The authors are with the Universidade Federal de Sergipe (UF®), Ssamples fromm = 6 to m = 10 were recorded during the
Cristovéo, CEP. 49100-000. E-mail:jmontalvao@ufs.br, efreire@ufs.br.  second session, about one month later.



I1l. FEATURESEXTRACTION AND COMPARISON Finally, concerning the comparison of two utterances

From each recorded sampte,,,, three kind of features are through its short-term spectral featgres, i.e. their _respectlve

extracted, namely: ' sequences of MFCC, vectors are aligned through time warp-
’ ing [11] and Euclidean{-norm) distances between corre-

(a) Long-term spectral features: median pitch from Strucwr%%onding vectors are summed up to provide the distance
utterances (duration of each utterances)3 dos (s(i,m), s(j, )

(b) Short-term spectral features: sequences of 13 Mel FreTherefore, from each pair of bimodal samples, ) and

quency Cepstral Coefficients (MFCC) vectors, from ths?(j, n), three unimodal distances are obtained, namaly:dp
same utterances of (a);

dd,s, that can be used separately, for monomodal identit
(c) Keystroke based features: sequences of DD time intervggr M P Y y

i ification, or all together, for multimodal verification.
from the typing of structured texts (31 keystrokes).

It is worth noting that, for the speaker recognition task,
two levels of information are taken into account [6]: spectral ) ) . ]
level, through MFCC vectors; and prosodic level, through the OUr approach is based on the assumption that metric fusion,
median of the pitch variation in each utterance. or fusion at the match score level, according to [2], can

Since typed texts are structured (i.e. the very same i@tperform decision fusion, or fusion at the decision level,
was typed by every subject), keystroke samples are Compalrféderms _Of falsg alarme rate (FAR) and_false rejection rate
according to the simplest algorithm proposed in the semir{éflR_R_)- Itis a quite straightforward reasoning k_Jecause, clearly_,
work on keystroke dynamics by Bleha et al. [7]. Howevefj,ec's'on fusion can be regarded as a specific case of metric

according to [8], we know that algorithm performance can ¥Sion, but the contrary is not true.

IV. DATA FUSION STRATEGY

greatly improved if the nonlinear memoryless mapping Accordingly, we regard each column vectad =
[dp,dy,dx]T as a point, in the 3D space, to be classified true
g(At) = 1 (Class 1, corresponding to distances between samples from the
1+ exp (—M) same subject) or false (Class 2, otherwise). That is to say that
! the fusion problem become a standard classification problem,
where K = 1.7, pu, = —1.56 and o, = 0.65 is applied to where two classes are to be considered.
each DD interval At, prior to comparison. From this point of view, we dispose of two main approaches

Indeed, it is shown, in [8], that the random variable thab implement distances fusion: (a) Classification after linear
models DD intervals is approximately log-normal and, consgrojection of incoming vector — linear classification boundary
quently, the memoryless mapping-) significantly improves — or (b) Classification of pointel with a nonlinear boundary
performance of verification algorithms that do not compensaietween classes.
for the unbalanced probability density functions of this random

Va?ﬁzlfésultin . . rA Linear Data Fusion with Fisher’'s Linear Discriminant
g comparison between keystroke timing samples
from each pair of (multimodal) sampleéi, m) ands(j,n) — A well-known approach to obtain a linear discriminant
i.e. samplesn andn, from subjectsi and j, respectively — boundary is the Fisher's Linear Discriminant (FLD)[10]. In
is a distance denoted b (s(i,m), s(j, n)). few words,_the Fisher’s solution projects points onto a specific
On the other hand, each utterance (3 s of digital audio) Y§CtOr v, I.€..
pre-processed as follows: yr=d"vp
1. The signal is split into nonoverlapping time frames of 4gjearly, ford = [dp, das, dk]” andvy = [vp, var, vk]T, for
ms; instanceyr is just a weighted sum of distances:
2. Pitch is estimated from each frame;
3. From the estimated pitch and the frame power, each frame yr =vpdp +vpdy +vrdk

Ilj‘nfllaissnt;lef(;i erlnS VOICredd?r u?(\j/oljc,jed; The particularity of the vectovr comes from the way it
oiced Irames are discarded, is calculated, i.e.:

5. Median pitch is estimated from the remaining frames
(only voiced signals); Vi = ((Rl SRy (- #2)t)
6. Finally, from each remaining window, a sub-window of

10 ms is taken and then mapped into 13-MFCC columiherey; andR; stand for the mean and the covariance matrix
vectors. of classi. In this case, we have just two classes:

Consequently, from step 5, a median pitch (scalar) is esti-e Class 1 - where samples are vectods, of distances
mated from each utterance, whereas, from step 6, a sequence between features from the same subject.
of 13-dimensional vectors (a matrix, where each column is a* Class 2 - samples are vectors of distances between
MFCC from a frame) is obtained. features from two different subjects;

Median pitchs from (multimodal) sampless(i,m) This projection vectory g, is optimal in the sense that it
and s(j,n), are compared in a straightforward mannefinds a tread-off between within-class dispersion minimiza-
dp(s(i,m),s(j,n)) is just the absolute difference betweerion and between-class distance maximization. Consequently,
median pitchs froms(i,m) ands(j, n). classification accuracy is improved when decision is taken

»



by comparing the scalar projectiom to a preset decision

threshold. ] =1 ] ZID -
Unfortunately, it is not optimized in terms of classification J J

performance, since the decision error minimization is a more dy (Sfmasj n) ;" dp (Si,m’sj,n) :

qomplex problem than squared error (dispersion) minimiza- d (Stm’ ) f =.,Y‘ dM(SimaSj,n)5

tion. ; , d (s, )

d v (si,m,s j’n) im>S ., n

B. Linear Data Fusion based on Optimal Estimation \ /
Another interesting linear fusion approach comes from the

optimal fusion of estimates theory, commonly applied to fusion 1 1 -

of signal from different sensors (in robotics [9], for instance). 0 1

Let #;, Z» and z3 be independent measurements of
(a constant, for instance), disturbed by additive unbiased
measurement errons;, ny andng, respectively, modeled asFig. 1. Distances centralization procedure.
independent random variables. Then, the best linear fusion of
estimates, i.e.: 1

Ys = a1Z1 + asZ2 + azls (1) ]
that minimizes the variance afs, is obtained when [13]:

252 1
050} @ 1

a; =
Fo%+ojop oo}

i,j,kel,2,3andi £ j,i £k, j#k.

In order to apply this approach to distances between features!
dp, dyr and dg, we should first “centralize” them so that,
given that features come from the same subject, all distances
are around zero, otherwise, they are closer to one. Thanks]
to this centralization, we can now see all distances as noisy

measurements of a single distance that equals 0 when features d
come from a single subject — Class 1 —, and equals 1 M
otherwise — Class 2.
This centralization is obtained as follows: Fig. 2. A 2D projection:dy; versusdyy.
Jw = Mv H2,x 7é M1,z L.

M2,z = H1z where it is assumed that each class corresponds to a random
where + € {P,M,K}, and yu; ., p2. stand for one- variable(?, and that both variables are Normal. Accordingly,
dimensional means of classes 1 and 2, respectively. each class has a 3-dimensional multivariate normal density

Finally, the Simplified Fusion of Estimates (SFE) is givefrobability given by:
by: 1 tp—1
ys = apdp + aprdas + ardg pldlwr) = W‘RH exp (—0.5(d — yuc) Ry (d — fuc))

where indicesP, M and K play the role of 1, 2 and 3, Assuming thata priori probabilities of classes are the same,
in Equation 2, re_s_pectlvely_. It is quth noting thgt, in thig is then classified by comparing(d|w;) to p(f|w,). Fur-
approach, a conditional fusion of estimates is provided. Mofgermore, in order to provide a flexible balance between FAR

precisely, conditionally to the fact that biometric multimodaind FRR, a parameter may be included, yielding the new
features come from the same subject or not, centralizgdcision ruled is in classk if

distancesdp, dy; and dx are noisy estimates of constants

0 or 1, respectively. p(d|wy) > Ap(flwi) Yk #1

Figure 1 illustrates the centralization procedure. This rule provides a quadratic (thus nonlinear) decision bound-
ary [10].
C. Non-Linear Data Fusion Figure 3 illustrates the use of single Gaussians to model

In Figure 2, a 2D plot of samples afy; versussamples classes. Note that mixtures of Gaussians or even Multi-Layer

of dg illustrates that, though a linear classification boundafyerceptrons may be alternatively used, at the price of increased
seems to provide a good solution (in terms of classification &@Mputational burden.
ror), it is also clear that a non-linear boundary can, potentially,
outperform the linear one. V. EXPERIMENTAL SETUP AND RESULTS

A quite simple but useful nonlinear classification strategy is Since our database was built up in two sessions, providing
the Bayesian Classification for Normal Distribution (BCND)5 samples per subject per sec session, we do simulate an



] TABLE |
] UNIMODAL VERIFICATION PERFORMANCE— 1 ENTRY PER ENROLLMENT
1 1 ENTRY PER VERIFICATION

Mode [ EER |

Keystroke | 14.8%
Pitch 19%
1 MFCC 9.7%
FAR

T T T T T T T T T T T T T T T T T

dy

Fig. 3. Modeling classes with single Gaussians.

00 T T T T T T T T T T T T T T T 1
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

enrollment procedure by using only samples from the first ses- decision threshold

sion as user models (profiles), and performing user verification
exclusively with samples from the second session. Fig. 4. FAR and FRR from keystroke samples only.
Only one sample from each subject, sampled during the
first session, is to be used as subject model (profile), and each
model is compared to each single sample from the secone The Fisher's Linear Discriminant (FLD);
session, thus 25005( possible modelsx 50 samplesx;) « Simplified Fusion of Estimates (SFE);
comparisons are carried out, being « Bayesian Classification for Normal Distribution (BCND).

(@) 250 with template and test signals from the same subject,Figures 5 and 6 illustrate performance results from fusion of
and median pitch distanceif), MFCC distancel,; and keystroke
(b) 2250 with template and test signals from different sulfistance ¢x), with FLD and SFE, respectively.
jects.

For simulations whose results are presented in this section,1.0
we refer to the 250 comparisons in (a) as true verification o
attempts, while the 2250 comparisons in (b) are seen as falsg, 4]
ones. 07]

In all experiments, half randomly chosen comparison, i.e.
125 true attempts and 1125 false ones, are used to estimaté®]
the classifiers parameters, such as means, covariances arftf]
EER thresholds, while the remaining comparisons are usedo4-
for test. Hence, experimental results presented in this sectiono.s-
were obtained fron50% of the 2500 comparisons distances. 2

0.1 /
A. Unimodal Experiments oS~
When simple unimodal verification experiments are inde- %% 0007 0002 0003 0004 0.005 0006 0007 0.008
pendently performed with distancek¢, dp and d,;, the decision threshold
corresponding results, in terms of false alarme rate (FAR),
false rejection rate (FRR) and equal error rate (EER, th®.5. FAR and FRR from fusion aip, dys anddy, with FLD.
operational point for which FAR equals FRR), are presented
in Table 1, and Figure 4 illustrates the dependence of FAR andiernatively, Figures 7 and 8 are Detection Error Trade-
FRR on the threshold choice. off (DET) curves, corresponding to the same results shown in
Figures 5 and 6.
B. Multimodal Experiments In order to allow a closer comparison between the two linear
For the multimodal experiments, distances were fused hysion strategies, namely FLD and SFE, Figure 9 shows the
using (see Section IV): two DET curves together.
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Fig. 6. FAR and FRR from fusion afp, dj; anddg, with SFE.
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Fig. 7. DET curve from fusion oflp, dy; anddg, with FLD.

respectively.

should replace Equations 1 and 2 with
Ys = a1®1 + asls

and
U% 01

a1 = —5 5 ag = —5 5

J%+U%

respectively.

TABLE Il
MULTIMODAL VERIFICATION PERFORMANCE WITH FLD — 1 ENTRY PER
ENROLLMENT, 1 ENTRY PER VERIFICATION

FLD Fusion | EER |
Keystroke and Pitch 8.3%
MFCC and Pitch 9.6%
Keystroke and MFCC 8.4%
Pitch, MFCC and Keystroke 8.0%
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Fig. 8. DET curve from fusion oflp, dy; anddy, with SFE.
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Fig. 9. DET curve from fusion oflp, dp; anddy, with FLD.

VI. DIScUSSION ANDCONCLUSIONS

According to the results presented in Section V, SFE
Tables I, Il and IV present some results, in terms ddpproach seems to outperform both FLD and BCND, what
EER, with the three fusion strategies: FLD, SFE and BCNI} quite a surprising result. Indeed, we can barely raise some
hypothesis to explain the superiority of this simple linear
Note that for fusion of just two distances with SFE, wéusion approach, but we believe that it is related to the “shape”
(dispersion) of Class 2 (see, for instance, the dashed contour in
Figure 10), whose average diameter is much greater then the
length of a suitable classification boundary (between-classes

interface).

According to this first attempt to explain SFE superiority,
we believe that most data in Class 2 are far from any suitable
decision boundary. Nevertheless, given its strong contribution
to the covariance matrix of Class 2, both boundaries provided

TABLE Ill
MULTIMODAL VERIFICATION PERFORMANCE WITH SFE — 1ENTRY PER
ENROLLMENT, 1 ENTRY PER VERIFICATION

SFE Fusion | EER |
Keystroke and Pitch 7.9%
MFCC and Pitch 8.4%
Keystroke and MFCC 6.7%
Pitch, MFCC and Keystrokg 5.0%




TABLE IV

Our experiments were realized with single samples as ref-
MULTIMODAL VERIFICATION PERFORMANCE WITH BCND — 1 ENTRY .
erences (3s of speach and 31 keystrokes per subject prototype,
PER ENROLLMENT, 1 ENTRY PER VERIFICATION .

and the same amount of data per test sample). Though it leads

BCND Fusion [ EER | to quite a limited performance, possibly, it may be useful in

Keystroke and Pitch 105% zggjeritaﬁre)tz?stgr:z ;vcf:;ret;aset enrollment is suitable and low

MFCC and Pitch 8.0% y p ’ .
Note, however, that performance can be improved by the
Keystroke and MPCC 9.5% use of more samples (or longer samples). Nonetheless, im
Pitch, MFCC and Keystrokg 5.8% P 9 P ) !

provements seem to be statistically representative, even with
results from such a small database.

by FLD and BCND are deviated by them from what could b? Qn the other hgnd, in spite of the smallness of the databases,
. . It is a true multimodal one, and to allow further compar-
a better solution, in terms of EER.

In other words, even if the FLD does minimize the Rayleigﬁ'Ons between the results reported here and performances

quotient [10], which is a quadratic criterion, it deviates fron%)f other approaches, with the same database, multimodal

the minimization of the EER criterion samples used in this work are available to download at
' www.ufs.br/biochavés (Internet web site).
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