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Abstract A new approach for both hand image seg-
mentation and feature extraction is described. The main
advantage of this approach, namely its robustness to low
quality images, is illustrated through verification exper-
iments with two public databases: one with scanned im-
ages from 50 subjects, and another one with low qual-
ity images acquired from 23 subjects, from a conven-
tional webcam. In both cases, features are successfully
extracted and good performances are obtained, in spite
of image quality. Moreover, the main drawbacks of fea-

ture extraction in conventional algorithms are highlighted.

1 Introduction

Hand shape recognition for individual identification/ ver-
ification is now a well known biometric modality [1-3].
It is roughly based upon the hypothesis that individuals
have different hand geometries (e.g. finger lengths, finger
widths, palm area).

Another important hand based biometric approach
takes into account palmprints [4,5] instead of contours
and/or finger/palm dimensions. Although the fusion of
both approaches seems to be a natural trend for hand
biometrics, this paper is only concerned with shape based
issues.

In spite of the relatively low performance of this
kind of biometric scheme, mainly if compared to typi-
cal fingerprint or iris based schemes, hand geometry is
attractive because of its unobtrusiveness, low-cost and
low data storage requirement [6]. Nevertheless, unlike
fingerprints, for instance, hand geometry is expected to
be more prone to deformations, mainly due to free fin-
ger rotations. Consequently, early attempts at individ-
ual authentication through hand geometry were mostly
based on digital images from hands placed on flat sur-
faces with fixed pegs carefully placed in order to con-
strain the hands into a standard position, before hand
picture is taken and digitalized [1].

It is also known [2] that, though pegs indeed facili-
tate image segmentation and feature extraction, it does
not totally avoid finger translation/rotation and, unless
some kind of image normalization is applied prior to
hand-to-hand geometry comparisons, performances can
be strongly degraded due to even small mismatchings be-
tween parts of such images. Indeed, assuming that mis-
matchings between images to be compared are a kind of
measurement noise, it has been observed that, in some
cases, this noise can be much greater than differences be-
tween hand geometries from individuals (i.e. useful sig-
nal), which are often minute [6].

Moreover, pegs or other positioning devices may de-
form hand shape if they push the hand skin during data
acquisition. For instance, in [1], finger widths just beside
pegs are avoided during feature extraction.

Most recent approaches that have appeared in lit-
erature claim that they allow “free” hand positioning
during acquisition. However, according to what we can
infer from database samples presented in [7], [8] and [3],
for instance, subjects are somehow induced to place their
hands according to a preestablished orientation for the
whole hand, into a limited area, from which they are fi-
nally free to rotate their fingers, given that fingers do not
touch each other. Indeed, this is explicitly mentioned in
[2].

A few state-of-the-art works also propose strategies
for “contact-free” hand feature extraction, such as in [9,
10]. Though these approaches are more computationally
demanding — because hands are free to rove around a
3-D limited space, instead of the usual 2-D flat surfaces
— they represent a new paradigm in terms of user accep-
tance. Unfortunately, they face some segmentation prob-
lems that are beyond the scope of this paper. Therefore,
in this paper, though some 3-D segmentation problems
are briefly mentioned in Section 2, we limit our focus to
2-D hand representation, acquired from flat surfaces.

In spite of the diversity and creativeness of new ap-
proaches to process “freely” placed hands, on flat sur-
faces, there is, at least, a common point among most of



them: they depend upon boundary-following algorithms,
even though relatively little attention is paid to this
very first step to be done. Consequently, motivated by
the lack of robustness of boundary-tracking algorithms,
mainly when applied to noisy images of hands with rings
or other jewelry, we propose here a new method where
no explicit contour tracing algorithms are applied.

In our approach — somehow inspired by the En-
semble Histogram Interval (EIH) approach [11] mainly
applied to speech signals, whose main advantage is its
robustness against noise —, hand images are scanned
column by column (or row by row, alternatively), and
fingers are detected by signal frequency analysis.

Thus, the main matter of this work is robustness of
hand image processing, which is discussed in Section 2,
prior to the description of the proposed method, in Sec-
tions 3 and 4. In Section 5, some details concerning data-
bases used in this work are given. In Section 6, experi-
mental results are presented and, finally, we discuss the
main issues from the new proposal in Section 7.

2 Robustness Issues

Feature extraction approaches from hand images in [1],
(2], [12], [6], [13], [8], [14] and [15], for instance, depend
upon common preprocessing steps, namely: foreground
segmentation, boundary detection. Moreover, except for
[1] and [15], they also depend on contour tracking al-
gorithms. Additionally, after contour tracking is done,
corresponding finger and palm contours must be prop-
erly segmented.
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Fig. 1 Successful contour tracing illustration.
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Fig. 2 Bad contour tracing illustration.

minute. In fact, the authors pay special attention to the
filtering of perturbation due to ring artifacts, however,
not enough details are given concerning the boundary-
following algorithm used by them.

Similarly, in [2], it is explicitly mentioned that the
trace of hand contours is obtained by “a boundary fol-
lowing algorithm”. Unfortunately, no further informa-
tion concerning this algorithm is provided.

In [3], a contour tracking algorithm from [16] was

In most published works, where hand images are scanned modified: 8 directions were considered instead of 4. This

with conventional desktop scanners, or pictures are taken
under controlled illumination, foreground segmentation
is not an important matter. For instance, in [6], both

simple clustering and more sophisticated watershed transform-

based segmentation were compared through their data-
base, providing equivalent results. Similarly, in [3], after
experiments with three clustering algorithms for gray-
level threshold search, the authors finally concluded that
small variations in the threshold choice do not relevantly
affect their final results. Thus, for their database, a range
from 65 to 100 (in 256 gray levels) was considered as the
threshold choice.

On the other hand, boundary detection and contour
tracking seem to be less straightforward matters. Surely,
even a simple contour tracking algorithm, whenever it is
properly initialized, may do the job correctly. Figure 1
illustrates such a case.

However, algorithms without specific constraints to
deal with rings, other jewelry, or even part of the arm are
clearly more prone to mistakes and may provide mean-
ingless contours, as it is shown in Figure 2.

In [6], for instance, it is highlighted that delineation
of hand contours must be very accurate, since the dif-
ference between hands of different individuals are often

adaptation was not justified in the paper but we believe
that it may have been motivated by robustness issues,
to avoid bad contours.
To get some experimental insights concerning this
issue, we also adapted a simple tracking bug algorithm
to thinned hand contours in our own low-quality data-
base (the BioChaves database, see Section 5 for further
details). But first, we manually removed wrist and arm
from each original image (a typical example is show in
Figure 2), in order to get only fingers and palm contour,
as it is shown in Figure 1. Still, the algorithm was care-
fully initialized with a start point corresponding to the
thumb contour. It is worth noting that to do so, some
initial information concerning hand position and orien-
tation is necessary. However, in spite of this highly favor-
able setup, in our experiment with low quality images,
we obtained 12 bad contours, out of 115 images.
Furthermore, once hand contours are properly ob-
tained, in most approaches, it is necessary to estimate
which part of the contour corresponds to each finger,
so that each finger can be translated/rotated prior to
metric comparisons. In both [2] and [13] very similar al-
gorithms based on contour curvature to detect fingertips
and valleys between fingers are used. However, from Fig-
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ure 2(a) in [2], it is easy to infer that correct fingertip
and valley detection depends upon a threshold to be set
to a limited value interval — high thresholds may cause
false detection of tips/valleys, whereas small ones may
cause non-detection of actual tips/valleys!.

We applied the algorithm proposed in [2] to our data-
base and we indeed observed that this limited threshold
interval, illustrated in Figure 3, is a clear drawback of
this approach, in terms of robustness.

Valid threshold margin

/ \ *

Curvature measure

Contour position

Fig. 3 Curvature based method for finding fingertips and
valleys between fingers.

In order to cope with this lack of robustness, in [13],
a Gaussian (low-pass) filter is applied to the signal cor-
responding to the contour curvature index, therefore,
providing a larger range for a suitable threshold. Nev-
ertheless, none of them study the risk of tips/ valleys
detection failing, in spite of the importance of the suc-
cess of this step for the whole algorithm, in both cases.
That is to say that, if a single valley is missed, for in-
stance, all features detected afterwards are likely to be
meaningless.

Yoruk et al. [6] have experimented with the same
approach based on the curvature of the contour for de-
tection of tips and valleys, but they observed that “this
technique was rather sensitive to contour irregularities,
such as spurious cavities and kinks, especially around the
ill-defined wrist region”. Consequently, they proposed a
more robust alternative, based on the radial distance
from contour points to a reference point around the wrist
region.

! Some papers, such as [3], don’t provide an explanation
for either how the arm is separated from the hand, or how
finger tips are detected.

Unfortunately, the reference point, defined as the first
intersection point of the major axis (the largest eigen-
vector of the hand inertial matrix) with the wrist line,
depends on the definition of the wrist line, not provided
in their paper. Nevertheless, we tried the approach by
assuming that the reference point is the closest intersec-
tion point toward the wrist (note that a previous knowl-
edge about finger orientation is necessary in this case).
But, as it is illustrated in Figure 4, the reference point
found in this way is not a robust parameter, at least for
images in our database, though the approach proposed
in [6] is possibly suitable for images taken from conven-
tional scanners, as in their work, where hands are easily
segmented from the foreground, excluding parts of the
arm.

!
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Fig. 4 Finding reference points according to the strategy
proposed by Yoriik et al. [6].

Finally, even in contact-free hand geometry techniques,
such as [10] and [9], hand segmentation is a crucial con-
cern. In [10], for instance, though feature point extrac-
tion is performed in a fairly clear imaging background,
the authors remark that it (automated feature extrac-
tion) remains a “very challenging process”. Indeed, in
spite of their powerful approach based on projective in-
variants, in order to get hand boundary properly de-
tected, they need an application-tuned Canny edge de-
tector, two thresholding steps, one being with hysteresis,
and a morphological erosion. They also apply a zero-
crossing technique to identify edge pixels during finger
seam detection. Again, a third threshold is necessary to
filter trivial edges.

Similarly, in [9], where a 3-D segmentation is done
through the fitting of a Gaussian Mixture Model to the

detected points, the convergence of the iterative Expectation-

Maximization procedure relies on good initial parame-
ter values. Therefore, in order to cope with the risk of
wrong convergency, which is analogous to 2-D region seg-
mentation through clustering, the authors exploit prior
knowledge of the body geometry. Nonetheless, even with
this application-tuned solution, after hand points are
segmented, the authors declare that hand silhouette is
not reliably estimated. Consequently, they follow a more
elaborate procedure instead, based on the distance trans-
form, which provides the smallest distance from each
pixel to the noisy hand boundary. As a result, both palm



center and approximated radius are estimated without
contour tracking.

Motivated by the former observations, we propose
a new method based on the following straightforward
hypothesis:

— In behalf of robustness, explicit contour tracking al-
gorithms are to be avoided.

— In most hand images, three or four fingers are almost
parallel and detection based on this parallelism is less
prone to mistakes.

— Doing multiple trials of simple detection tests is a

straightforward recipe for robust strategies. More specif-

ically, our approach is directly motivated by results
from the application of the Ensemble Histogram In-
terval (EIH) [11] on speech signals, and by its robust-
ness against noise.

We highlight that the application of this method is lim-
ited to 2-D hand images, or 2-D projection of 3-D mod-
els.

3 Image Preprocessing

Before application of the proposed method itself, a sim-
ple two-step pre-processing must be considered for each
hand image. Pictures are assumed to present a single
left hand image. Whenever the background is roughly
uniform, a single threshold should be applied in order
to provide a two level representation, where hand (fore-
ground) pixels are coded in black and background pixels,
in white. Figure 5 illustrates this first preprocessing step.

Fig. 5 Preprocessing - step 1: thresholding.

From our database, three color channels — red, green
and blue — from each hand picture are available, with in-
tensity levels ranging from 0 (lowest) to 255 (brightest).
For our database, enough contrast between foreground
(hand) and background was observed from the red chan-
nel, which was systematically taken as preprocessing in-
put. Then a static intensity threshold equal to 100 was
applied to provide the two-level matrix, where each entry
corresponds to a image pixel, whose gray level attribute
is 0 (black foreground) whenever red channel intensity is
above threshold, or 255 (white background) otherwise.

HSV color space representation prior to background
segmentation was also tested, but it did not improve
segmentation results. As far as we can understand this
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result, it is probably due to the strong amount of red

present in the targeted foreground, the human skin. Nonethe-

less, we highlight that, depending on the background
color, perceptual color space, such as HSV, would pro-
vide better results. In any case, even in RGB space,
we did not optimize discriminability between foreground
and background. Instead, we chose channel R for simplic-
ity. Besides, it is clear that we could improve foreground
segmentation by using better illumination or even an-
other, more elaborated setup for hand image capture.
Nonetheless, the noisy foreground segmentation we ob-
tained is rather welcome in this work because it high-
lights the robustness of the main part of our approach,
which is aimed at replacing boundary-following algo-
rithms.

This two-level matrix is then low-pass filtered and,
from the resulting matrix, M, two discrete gradient ma-
trices are obtained, namely D, and D,, according to:

D, =M=«H (1)
D, =M H” (2)

where symbol * stands for 2D discrete convolution, T’
stands for matrix transposition and

+1+10-1-1
+1+10-1-1
H=|+14+10-1-1
+14+10-1-1
+14+10-1-1

is the low-pass filter mask.
Then, intensity gradient, G, can be obtained as in
Equation 3.

G(Za]) = DI(Zv.])um + Dy(%])uy (3)

where u, and u, are orthonormal vectors.
Figure 6 illustrates this second pre-processing step
by showing |G| as a gray bitmap.

Fig. 6 Preprocessing - step 2: boundary detection.

4 Proposed Method
4.1 Step one: column-by-column scanning

First, a compensation factor C = cos(2(¢,5)) is com-
puted for each image pixel, according to Equation 4,
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where Q(i, j) = £G(i,j) — 7/2, as illustrated in Figure

7.

(Da(i,7)? + Dy (i,4)?)

Then, assuming that matrix M represents a single left
hand image with fingers oriented from right to left, M
is then scanned column-by-column, so that whenever a
Ogray level (threshold) crossing is detected, the corre-
sponding line, j, is recorded along with its column, 4.

Each thus detected pixel position, (i,7), along with
the corresponding parameters L(7,j) and C(i,j), are
given as inputs to a list of all points sequentially de-
tected, column-by-column, through the whole matrix (
M.

Let P, = (in,jn), » = 1,..., N be the whole set of
points sequentially detected from the leftmost column
to the rightmost one. Then, a rough but biased finger
and/or palm width estimation, in pixels, is provided by

C(Za]) =

L(’Lv 7) = jm+1 - 7m

where m only corresponds to points P,, associated to

high-to-low © g,y -gray level crossings (presumably, a lower

boundary of a finger/palm).

Clearly, finger /palm width estimation L(4, ) strongly
depends on the finger/palm rotation. That is to say that
fingers and/or palm, not horizontally oriented, do pro-
voke biased higher L values.

To compensate for this bias, L(4,j) must be multi-
plied by the compensation factor C(i,j), according to
the illustration in Figure 7.

Fig. 7 Method illustration — step one.

4.2 Step two: spectral detection of quasi-parallel fingers

Alternatively, an equivalent representation of detected
points and their corresponding parameters is provided
by the following vectors:

— z(m): column index, i, where the m-th high-to-low
Ogray crossing was detected. Note that columns are
scanned from left (i = 1) to right.

— y(m): row index, j, (down-up) corresponding to the
m-th detected high-to-low Ogyq, crossing.

— I(m): corresponding compensated width, i. e. [(m) =
L(i, j)C, ).

— ¢(m): corresponding compensation factor, i. e. ¢(m) =
C(i, 7).

Thanks to this representation, y(m) can be seen as an 1D
signal and, given that three or four fingers are expected
to be horizontally oriented, y(m) is likely to present a

bltmapéluasi—periodic behaviour through columns that intercept

those fingers, whose period is 3 or 4, respectively, i.e.
y(m) =~ y(m + 3), throughout columns that intercept 3
quasi-parallel fingers, and y(m) ~ y(m + 4), for 4 quasi-
parallel fingers. Figure 8 illustrates a segment of signal
y(m) in which a quasi-periodicity is observed.
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Fig. 8 Quasi-periodicity illustration.

Therefore, much like a barcode scanner, in this spe-
cific step, the method runs throughout columns looking
for three or four barely parallel and equally spaced bars,
corresponding to fingers.

Note, however, that approximation y(m) ~ y(m+T)
is also true for any 7' > 1 whenever y(m) remains almost
constant (DC signal). Consequently, detection of inter-
vals for m where y(m) is quasi-periodic with 7' = 3 or
T = 4 is a crucial task accomplished by tuned filters,
where each filter, tuned at period T' = 1,2, 3, or 4, re-
spectively corresponds to the nonlinear mapping given
in Equation 5.

m~+10

ar(m) = Z

k=m

y(k+T) —y(k)

G (5)

where y(k) is always a positive non-null row counter.

Once signals aq(m) to as(m) are available, a simple
logic test indicates the interval, for variable m, in which
the signal y(m) is more likely to correspond to quasi-
parallel finger detection. This test, given by

1, if((a1 > A) @] (ag > A))ﬂ
a = ((ag < A) @] (a4 < A))
0, otherwise



(where threshold A = 0.01 was set experimentally), looks
for quasi-periodicity of y(m), while it also avoids con-
stant and quasi-constant signals.

It is worth noting that threshold A = 0.01 only de-
pends on the noise level of the image, and we experi-
mentally observed that 0.01 seems to be a suitable value
even for low quality images, as in our database.

Figure 9 illustrates how y(m) is processed in order
to provide a flag signal a(m), which equals one (true)
for values of m corresponding to columns where quasi-
parallel fingers are detected.

Tuned filters

(Filter#1 ("
TL(Tr=1)

- Filter #2
(m) (T=2) ’ a(m
y4> Detector )
Filter #3
(T=3)

_(Filter #4
(T'=4)

A

Fig. 9 Tuned filters for quasi-periodicity detection.

Figure 10 gives an illustration of how signal a(m) is
obtained throughout logic operations.

4.3 Step three: average finger width estimation and
hand region delimitation

Average finger width is estimated according to Equation

6.
M
2 m=1 @(m)
where M stands for the length of vector y.

This average finger width, L, plays a central role in
the following steps. Based on this parameter, fingers and
palm are segmented from the arm, a watch or whatever
is not relevant to the process.

Indeed, from L and the average column

M
< _ Sl a(m)a(m)
M
2m=1 @(m)
and based on typical hand proportions, we define an in-

terval of image columns in which we expect to find all
fingers and palm, i.e.:

Xoin =X — 3L

and - -
Xoae = X +6L
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Fig. 10 Flag (logic) signal indicating quasi-parallel finger
detection.

define a interval for 2 (column index) which should en-
compass all fingers and palm, while it avoids wrists, ac-
cording to average hand proportions we estimated from
our database. We highlight that these proportions roughly
remain constant for normal hand shapes?.

Similarly, an expected average palm width is defined
as Pa = 4L. These two dependent average measures, Pa
and L, are then used to filter x(m) between X,,;, and
Xmaz, according to their associated width attributes.

For the sake of clarity, we define feature vectors as:

f(m) = [z(m) y(m) I(m) c(m)]

Accordingly, a filter is applied so that only feature vec-
tors, f(m), inside the interval for m corresponding to
columns from X,,;n to X;naz, Wwhose width attributes,
I(m), are in the interval from 0.5L to 1.5Pa, are trans-
mitted to the next algorithm step.

4.4 Step four: palm segmentation

After hand segmentation and filtering based on aver-
age finger width, selected feature vectors are expected
to represent only fingers and palm. Consequently, widths
should be roughly characterized by a bimodal distribu-
tion: low widths for fingers and high widths for palm.
Thus, even a simple clustering algorithm would be able
to provide palm segmentation.

2 Indeed, similar standard hand proportions are frequently
used by art students, for instance.
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Nevertheless, for robustness concerns, we apply here
a simple threshold based selection, i.e., feature vectors
whose width attributes are greater than 3L are seg-
mented as palm features. Note that this threshold is
adaptive, for it depends on L.

4.5 Step five: finger segmentation

Initially, feature vectors whose width attributes lie be-
tween 0.5L and 1.5L are segmented as fingers.

The whole set of feature vectors thus segmented as
fingers is to be properly clustered and labeled as thumb,
index, middle, ring, or little finger. For this specific task,
we use a simple but robust sequential clustering algo-
rithm, which can be summarized as follows:

1. Initialize 9 clusters with null feature vectors.
2. Through columns corresponding to segmented fin-
gers, from left to right, do:

2.1 Compute the absolute difference between attribute
y(m), (row) from each feature vector, and the cor-
responding feature from the last input in each
cluster.

2.2 If the minimum absolute difference is less than
L/2, then accept this feature vector as a new in-
put to the corresponding cluster (closest one).

2.3 Otherwise, if there is still a cluster with only null
vectors, accept the new feature vector as the first
non-null input to it (i.e., start a new non-null clus-
ter). In case all clusters are already fulfilled with
non-null entries, then stop.

3. Sort all clusters according to their cardinality and
take the five biggest ones.

4. Sort these 5 biggest clusters according to the average
y attribute (centroid row, §)

5. From the highest to the lowest ¥, corresponding clus-
ters are associated, respectively, to thumb (1), index
(2), middle (3), ring (4), or little (5) finger.

Thus, from each hand picture, 6 sets of non-null fea-
ture vectors are extracted, namely: Fy, from palm, Fy,
Fy, F5, Fy and F5 from thumb, index, middle, ring, and
little finger, respectively.

Finally, in agreement with the study presented in [2],
concerning the sub-segmentation of fingers into smaller
parts to improve distinctiveness between individuals, sets
Fy, k =1,...,5, are split into subsets Fj 1, Fgo, ...,
Fy, np, where NP stands for the number of finger slices
(subsets) to be considered.

4.6 Step six: hand proportions estimation

A final step for feature extraction is the estimation of
finger/palm length and average width, which can be
easily obtained from subsets Fj,,, 0 < k < 6, and
1 <m < NP, for k # 0. Indeed, average widths, wy ,,
are thus estimated as the mean of all width attributes in

subset Fy ,,,, whereas finger /palm length, A, is simply
the cardinality of the corresponding cluster — i.e. the
number of columns that intercept each finger or palm
— divided by the averaged c of the cluster. This divi-
sion compensates for cardinality dependency upon fin-
ger /palm rotation.

We highlight that, alternatively, when pictures of hands
to be compared are taken with different resolutions (in
terms of pixel per inch, for instance), all estimated pro-
portions h and w, here expressed in number of pixels,
can be divided by L in order to provide a dimensionless
set of measures.

Figure 11 provides an overall illustration of the six
steps for feature extraction.

Steps 1,2 and 3
A 37 6L
t— P>
c 5;%(“‘*’ 5
= ]
>
CC;/ _
5
Finger detection interval

Steps 4 and 5

'R

Fig. 11 Whole method illustration.



4.7 Hand proportions comparison

Let h*, w" represent hand features from the u-th picture
in the database, whereas h”, w", represent those from the
v-th picture. A simple comparison between hand shapes
is provided by the summation of absolute differences be-
tween corresponding features, i.e., the Manhattan dis-
tance between features [17].

5 Data Acquisition

Two databases were used in experiments with the pro-
posed method:

a) the BioChaves hand database?
b) and the GPDS [3] database, downloaded from the
Internet in December 2006.

In the BioChaves database, hand pictures were taken
with a conventional low cost webcam, attached to a sup-
port over a black background. Figure 12 illustrates this
setup, where we can observe that 6 white paper strips,
over the black background, roughly orientate hand posi-
tioning. That is to say that, in the BioChaves database,
hands are not freely positioned, though no pegs were
used. Furthermore, images were acquired in low resolu-
tion: 288 rows per 352 columns, and illumination pro-
vided just by the fluorescent lamps already present in
our laboratory.

A .

1

Fig. 12 Image acquisition setup.

As indicated in Figure 13, we got 5 images per sub-
ject, from 23 subjects. After each new picture, subjects
were asked to remove his/her hand from the setup and
replace it a few seconds later.

3 Database available for download at

www.ufs.br/biochaves.
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v Database:

" — 23 subjects

" — b pictures per subject

T > 288 x 352 pixels per picture

Fig. 13 Database illustration.

Additionally, 10 out of the 23 subjects were asked to
come back at least one month later, and provide 5 more
samples (images) from the same hand. This second set
of images will be referred to as the second session, in
Section 6.

In the GPDS database, images were acquired with
a typical desk-scanner using 8 bits per pixel (256 gray
levels), with a resolution of 1403 rows per 1021 columns,
consisting of 10 different acquisitions per subject, from
50 subjects. The number of sessions in not given.

6 Experimental Results

Three experimental results are presented here. One with
the GPDS database of scanned images of right hands,
and two with the BioChaves database, with left hand
images from a conventional webcam.

As explained in Section 3, the very first algorithm
we implemented to test the new method is adapted to
process left hand pictures (as in Figure 5), in which fin-
gers are oriented from right to left, whereas the thumb is
in the higher part of the image. However, in the GPDS
database, only scanned images from right hands are pro-
vided, with fingers oriented upward and thumb on the
right side. Fortunately, a very simple adaptation was
possible by a 90 degrees counterclockwise rotation of
such images.

Therefore, we highlight that images from BioChaves
(from a webcam) and GPDS (scanned) databases were
taken from opposite sides of hands. Moreover, hand po-
sitioning in the BioChaves database was partially con-
strained by white strips over the black background, as
it is shown in Figure 12. In all experiments, parameter
NP was set to 9 (i.e, NP = 9. See Subsection 4.5 for
further details).

For the first experiment, each image (out of 10 per
subject) was compared to all other images in the GPDS
database. Thus we tried to simulate a single picture en-
rollment wversus a single picture interrogation. Whenever
the score computed with images from the same subject
is above a given threshold, a false rejection is registered,
whereas a false acceptation is registered whenever scores
from different subjects are below the same threshold.
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In Figure 14, it is possible to observe both False Ac-
ceptation Rate (FAR) and False Rejection Rate (FRR)
dependence on the decision threshold, along with two
distance histograms: one from the same subject (left
histogram), and another from different subjects (right
histogram). The threshold which provides Equal Error
Ratio (EER - the operational point where FAR equals
FRR) is also indicated.

Corresponding
distance
histograms

EER=2.6%,

0 ? 20 300 400 500 600
105 Decision Threshold

Fig. 14 FAR and FRR variation from the GPDS database.

In order to provide another point of view, Figure 15
presents a Receiver Operating Character (ROC) Curve
for the same experiment.
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Fig. 15 ROC curve from the GPDS database.

As a second experiment, the same one-sample enroll-

ment/interrogation simulation was done with the BioChaves

database. As it was mentioned in Section 2, we were un-
able to successfully process all images in our low quality
database necessary for estimating a vectorial representa-
tion of the hand contour (a basic step for feature extrac-
tion in most approaches). By contrast, all images were
successfully and correctly processed and features auto-
matically extracted with our new proposed method.

Figure 16 presents the experimental result obtained
from the BioChaves database, with 5 samples (images)
from each subject, and 23 subjects.

Single session

0 ? 100 150 200 250 300 350
58.4 Decision Threshold

Fig. 16 FAR and FRR variation from the BioChaves data-
base.

In this experiment, an FER ~ 3% was obtained,
quite close to the EER =~ 2.6% in spite of the difference
between data acquisition setups. Moreover, as expected,
the lower quality of the BioChaves images leads to a
lower performance, in terms of EER. We should observe,
however, that EER corresponding thresholds depend on
image resolution, for distances between features are mea-
sured in number of pixels.

Finally, in the GPDS database it is not mentioned
whether images were acquired during a single session
(i.e., all images per subject acquired at once) or other-
wise. Therefore, in order to simulate a situation in which
interrogation (still with a single image) is done at least
one month after enrollment, we asked 10 subjects (out
of 23) to provide 5 more samples, at least one month af-
ter the first session. Then, we again did the one-sample
enrollment/interrogation experiment. However, in this
case, only comparisons between samples from different
sessions were allowed. It roughly corresponds to a simu-
lation of interrogation done more than one month after
enrollment. Figure 17 shows the result in terms of FAR
and FRR, along with the corresponding EER.

In Figure 18, we can compare performances with
samples from one or two acquisition sessions.

7 Discussion and Conclusions

A new method for feature extraction from hand images
was proposed. It was mainly motivated by the lack of
robustness of most strategies based on contour tracking
algorithms.

Inspired by the well-known robustness of the Ensem-
ble Histogram Interval (EIH) processing against back-
ground noise, mainly applied to feature extraction from
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Fig. 17 FAR and FRR variation from the BioChaves data-
base — two sessions.
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Fig. 18 ROC curves from the BioChaves database.

speech signals, we proposed a new method where hand
images are scanned column by column (for hands hor-
izontally oriented) and fingers are detected through an
interval between (gray) level crossing analysis, as in ETH
based algorithms.

The strength of this kind of approach is partially due
to the repetition of simple tests. This multiplicity of tests
tends to reduce the influence of individual errors caused
by noise.

For the specific case of hand image processing, it
is particularly useful for quasi-parallel finger detection,
even when subjects are wearing rings, for the multiplic-
ity of periodicity tests (one to each column) improves
the probability of finding fingers, from which average
width (i.e. finger width) estimation plays a central role
in the method. A few experimental verification results
are presented as illustrations of the performance of this
new method, and performances are comparable to those
presented in [2], which is a quite expected result, for the
features we use here are the same, i.e. fingers and palm
width and height, though the extraction methods are
rather different.

Jugurta Montalvao et al.

We further highlight that, once hand contours, finger
tips and valleys between fingers are correctly detected,
we do not expect our method to outperform, for instance,
results presented in [2], in terms of EER. However, we
claim that, whenever there is a high fail rate of finger
tips/valley detection, our approach provides a reliable
alternative method with competitive performance.

Moreover, through experimental results from data-
bases prepared with very different setups, we observe a
consistent performance, roughly expressed by EER close
to 3%, with data from a single acquisition session. We
further highlight that all images, in both databases, were
correctly processed, with the very same algorithm. That
is to say that no algorithm adaptation was necessary
other than the 90-degree counterclockwise rotation of
images from the GPDS database.

For the last experiment, in which two data acquisi-
tion sessions were used, at least one month apart from
each other, a lower performance was obtained, as ex-
pected. Indeed, some of the subjects that took part in
this experiment had their hand shape clearly changed
from one session to another. For instance, one of them
was a pregnant woman whose weight slightly changed
during this period. Certainly, we believe that this worse
result is much more realistic for practical applications of
the method.

Now, we are just paving the route to analyzing the
influence of each finger on hand shape recognition, and
to improving the method performance through fusion
strategies. A more straightforward future work, also in
preparation, is the adaptation of the method to any pos-
sible hand orientation.

In spite of the smallness of our database (BioChaves),
we tried to compensate for this drawback by making
it available for download at www.ufs.br/biochaves, and
thus allow further comparisons between the results re-
ported here and performances from other strategies. Fur-
thermore, a simple routine, in Scilab code [18], for fea-
ture extraction from grayscale bitmaps, according to the
new method proposed in this paper, is also available for
download at the same website.
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